首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
呼和浩特市大气中酞酸酯的初步研究   总被引:8,自引:0,他引:8  
通过对呼和浩特市不同功能区和不同季度的大气中酞酸酯污染物的采样监测调查,证实了酞酯不仅存在于大气中,且浓度比较高,为531ng/m^3,是草原地区背景值(10-33ng/m^3)的16倍以上。根据调查表明,不同功能区中大气中酞酸酯(DNBP和DEHP)的浓度差异较大;相同功能区的不同季节,酞酸酯浓度也存在较大差异,但酞酸酯浓度与大气颗粒物呈现出良好的相关性,冬、夏季的相关系数分别为0.971和0.  相似文献   

2.
对广州市不同功能区秋季大气颗粒物显微组分的优控多环芳烃的研究表明,颗粒物显微组分主要是碳球,微粒有机质,有机质碎屑,各种矿物,生物碎屑等,不同功能区颗粒物组分的组 合有所差异。它们主要来源于人为,地质和生物成因。研究区检美国环保局提出的优控制PAH为15种,其浓度为27.38-228.56ng/m^3,且随功能区不同的而变化。碳球、闰有机质和有 机质碎屑百分含量与优控多环芳烃浓度很好的相关性。  相似文献   

3.
呼和浩特市大气酞酸酯污染的特征   总被引:1,自引:0,他引:1  
本研究以内蒙古四屯王旗草原为对照点,于冬夏两季采集呼和浩特市不同功能大气颗粒物样品,用气相色谱仪测定样品提取物中的酞酸二正丁酯和酞酸二异辛酯。结果表明;1.呼市地区大气颗粒物中两种酞酸酯的日均值冬季为272ng/m^3,夏季为269ng/m^3,差别不大,但两种酞酸酯在气态和颗粒态中的浓度总和夏季远远高于冬季。2.各功能大气颗粒物中的酞酸酯冬季以居民区最高,清洁区最低,夏季以文化区,工业区较高、清  相似文献   

4.
城市道路交通PAHs污染现状及来源解析   总被引:23,自引:0,他引:23  
分析并讨论了杭州市大气中PAHs的浓度、存在形态及其与车流量、气温、风速、NO、SO2总悬微粒浓度之间的关系。结果表明,杭州市城区交通干线空气中PAHs污染十分严重,9种PAHs含量平均达3.39-13.82μg/m^3,其主要排放源为汽车尾气。  相似文献   

5.
厦门海域大气中颗粒态硫酸盐的浓度存在着季节性的变化规律,其浓度大小为:冬季大于春季大于秋季大于夏季。颗粒态硫酸盐的平均浓度估算为9.37μg/m^3,其中海盐源和大海盐源硫酸盐分别为0.89和8.48μg/m^3,硫酸盐在不同粒径颗粒物听分布呈双型:粗颗粒硫酸盐来源于海盐,而细颗粒硫酸盐则非来自海盐。利用所采集的大气干,湿沉降的试样,测定了颗粒态硫酸盐的分布变化特征,并估算了大气输入厦门海域的颗粒  相似文献   

6.
重庆大气汞初步调查   总被引:23,自引:1,他引:23  
对重庆市大气汞调查结果表明,重庆渝中区及近郊区大气汞浓度范围为9.2~101.5ng/m3,平均34.4ng/m3;大气汞形态90%以上为气态汞;大气汞分布在工厂区及城市中心较高,城外较低,自然保护区最低。  相似文献   

7.
雷秀芬  王龙 《环境科学》1993,14(6):30-33
采集冬季太原市一采样点不同粒径大气颗粒物,经分析,总悬浮颗粒物日均浓度为1.04mg/m^3,严重超标。其中粒径小于7.0μm的占49.6%,小于3.3μm的占33.5%。颗粒物无机提取液中5种金属元素的浓度由高到低依次为Pb,Mn,Cr,Ni和Cd。每种元素均呈随颗粒物粒径减小浓度增高的趋势。以SOS显色法和小鼠体内骨髓细胞染色体畸变试验检测颗粒物的无机提取淮和模拟肺泡液溶出液的遗传毒性,表明小  相似文献   

8.
多环芳烃在环境中的行为   总被引:28,自引:0,他引:28  
董瑞斌  许东风 《环境与开发》1999,14(4):10-11,45
多环芳烃(PAHs)由于其致癌性和致突变性而受到广泛关注,文中介绍了多不玉烃在环境中的来源,分布和去向,环境中的多环芳烃主要来源于植物合成和化石燃料的燃烧,以往的研究表明多环芳烃在大气,土壤和植物中的浓度分别为1-610μg/m^3,10^3~10^6μg/kg和20~1000μg/kg,实验室研究表明某些植物要环境中的多环芳烃,并在植物体内移植,淋洗方法不能有效地除多环芳烃对蔬菜的污染,然而,环  相似文献   

9.
环状扩散采样管的研制及其在大气氨测定中的应用   总被引:2,自引:0,他引:2  
为解决采样过程中气体与颗粒物之间的相互干扰的问题。在国内首次研制出新型大气痕量气体采样装置-环状扩散管,并应用于采集大气中的氨。在大气条件下对氨的收集效率可达97%,检测限为0.15μg/m^3,与滤膜法和湿式环状扩散管进行了对比实验。结果表明三者基本一致,从1985年到1992年,在4-5月份测定了北京中关村地区大氨浓度,其变化范围4.6-40μg/m^3,平均浓度17μg/m^3。  相似文献   

10.
在大气环境中,化合物的气态/粒子态组成比例系数KP=(F/TSR)/A,式中F(ng/M^3)是化合物的粒子缔合浓度,A(ng/M^3)是化合物的气态浓度,TSP(μg/M^3)是总悬浮微粒的浓度。KP是温度(T,K)的函数,其表达式为logKP=mp/T+bp,利用日本大孤城区的数据,在相对湿度对KP值的影响,由此确定出比例系的测定值(logKP)与计算值(mp/T+bp)之间的残差为cpRH+  相似文献   

11.
武汉市洪山区春季PM2.5浓度及多环芳烃组成特征   总被引:2,自引:0,他引:2  
分析了武汉市洪山区2014年春季PM2.5的浓度,并利用气相色谱/质谱(GC/MS)测定了多环芳烃(PAHs)的组成.结果表明,PM2.5的质量浓度为47.99~195.87μg/m3,平均质量浓度为(101.34±32.49)μg/m3,超标天数占总监测天数的81.82%;PM2.5质量浓度与各气象要素间的相关性不显著.PM2.5中PAHs日均浓度变化范围为8.44~34.45ng/m3,平均浓度为21.48±7.03ng/m3,其中4环PAHs的含量最高,达到11.72ng/m3,占总PAHs浓度的54.56%,结合典型污染来源中PAHs的特征比值和数学统计中主成分分析法,判断出其主要污染来源为车辆排放、燃烧源和燃煤源;PAHs日均总毒性当量(∑BaPeq)浓度范围为1.10~5.46ng/m3,平均值为2.99ng/m3,日均超标率达到60.61%.  相似文献   

12.
对于五大连池大气中PAHs的污染研究,通过在该地区的农村设置大气采样点,进行了为期一个季度的大气样品采集,对PAHs的污染特征和来源进行了初探,结果表明,大气中∑16PAHs浓度范围为40.2-247.1 ng/m3,平均值为116.8 ng/m3。通过等效毒性当量因子计算得到五大连池大气中BaP当量浓度为6.086ng/m3,符合我国规定的10ng/m3。  相似文献   

13.
哈尔滨大气中PAHs污染特征   总被引:2,自引:0,他引:2  
多环芳烃(PAHs)是大气中广泛存在的一种有毒污染物,因其具有"三致"毒性,已成为关注的焦点。本文通过在哈尔滨市区设置大气采样点,利用大流量主动采样器进行为期一年的大气样品采集,对大气中PAHs的浓度、污染特征进行了研究,并深入探讨了PAHs的污染源和贡献率,结果表明,哈尔滨大气中∑16PAHs浓度范围为6.3~340 ng/m3,平均浓度为100±94 ng/m3,主要以低分子量的PAHs为主。与国内外的研究相比,哈尔滨大气中PAHs的污染处于中等污染水平。PAHs具有明显的季节差异,低温气象条件和排放源的增强是导致冬季PAHs污染加重的主要原因。  相似文献   

14.
通过将比值法、主成分分析和正定矩阵分析法相结合对大气中PAHs的污染源进行了解析,结果表明,煤的燃烧和汽车尾气的排放是PAHs的主要污染源,冬季,煤的燃烧是主要污染源,其贡献率为60.6%,其次为汽车尾气排放(34.4%),其他季节,汽车尾气的排放和燃煤污染是主要的污染源,其贡献率分别为59.3%和17.1%。通过等效毒性当量因子计算得到,哈尔滨大气中BaP当量浓度冬季为7.751 9 ng/m3,其他季节为0.688 6 ng/m3,均符合中国规定的10 ng/m3。  相似文献   

15.
为探讨华北地区秋冬季重污染过程PM2.5(细颗粒物)中PAHs(多环芳烃)的污染水平、分布特征及来源,分别采集2018年11月17日—2019年1月19日德州市和北京市PM2.5样品,利用气相色谱-质谱法测量两个站点6次重污染过程中26种PAHs浓度水平,分析PAHs污染特征、分子组成分布及其来源,并利用毒性当量因子估算了PAHs毒性.结果表明:①6次重污染过程中,德州站点∑26PAHs浓度为62~191 ng/m3,北京站点为61~129 ng/m3.②单位质量PM2.5中PAHs的浓度北京站点更高.③两个站点PAHs分子组成分布较为一致,萘、蒽、芴等低分子量的PAHs浓度较低,高分子量PAHs浓度较高,浓度最高的分别为苯并[b]荧蒽、苯并[a]芘、苯并[a]蒽和甲基荧蒽等.④特征比值结果显示,PAHs来源包括柴油车尾气、燃煤和生物质燃烧,德州站点受生物质燃烧影响更为显著.⑤毒性当量计算结果表明,德州站点毒性当量浓度(TEQ)高于北京站点,6次重污染过程中两个站点PAHs的TEQ平均值在6.5~17.2 ng/m3之间,低于国内其他一些地区,但苯并[a]芘的浓度在5.2~13.1 ng/m3之间,超过了GB 3095—2012《环境空气质量标准》日均值的标准限值(2.5 ng/m3),对人体健康存在潜在危害.研究显示:秋冬季重污染过程中,北京站点单位质量PM2.5中PAHs的浓度较高,两个点位PAHs分子组成分布特征及来源较为相似,且均对人体健康存在潜在危害;应进一步加强对PAHs浓度水平的控制,这不仅有利于持续改善PM2.5污染,也有助于减轻人体潜在的健康风险.   相似文献   

16.
利用SPMD技术监测珠江三角洲大气中多环芳烃   总被引:5,自引:0,他引:5  
利用半渗透膜被动采样装置(SPMD),对珠江三角洲地区大气中多环芳烃进行了分季度为期一年的监测,同时在广州(GZ01站)用大流量采样器进行主动采样分析.结果表明,SPMD主要采集大气气态多环芳烃,其富集速率Rs受温度影响显著,低温更有利于SPMD对有机物的渗透富集.大气气态PAHs浓度季节差异明显,各季度平均值分别为286.0ng/m3(4~6月),322.0ng/m3(7~9月),216.4ng/m3(10~12月)和153.3ng/m3(1~3月),温度是影响气态PAHs含量高低的主因素.该区域内,污染程度呈南北低、中间高.污染源主要来自于机动车尾气的排放.  相似文献   

17.
鞍山市大气中多环芳烃健康影响评价   总被引:2,自引:0,他引:2  
通过对鞍山市典型区域(6个污染源、4个居住区、一个对照点)大气颗粒物中PAHs的监测,采用BaP当量致毒系数TEF,研究了鞍山市大气颗粒物中典型PAHs毒性当量分布特征。研究结果表明,鞍山大气中典型PAHs污染主要以4~6环为主,不致癌BaP当量浓度为0.066ng/m3,致癌BaP当量浓度为12.7ng/m3,强致癌BaP当量浓度为8.1ng/m3,很强致癌BaP当量浓度为12.7ng/m3。BaP毒性当量浓度呈现出采暖期要远远高于非采暖期,工业区及工业区周边BaP毒性当量浓度要远远高于居住区和对照点。  相似文献   

18.
焦化厂周边PM10-梧桐叶片-土壤介质中PAHs相关性研究   总被引:3,自引:1,他引:2  
为了研究焦化厂大气可吸入颗粒物(PM10)、梧桐叶片、土壤3介质中PAHs的污染特征、来源及相关性,连续1 a采其周边PM10、梧桐叶片及土壤样品,利用美国EPA8000系列方法进行分析.结果发现,PM10、梧桐叶片、土壤3种介质中PAHs总量年平均值分别为101.11 ng/m3、79.45 ng/g和121.53 μg/g;PM10中苯并(a)蒽、苯并(g,h,i)、荧蒽、苯并(a)芘等高环数的多环芳烃占明显优势;在梧桐叶片中萘、苊、苯并(a)芘和苯并(g,h,i)的含量较高;土壤中苊烯、芘、苯并(a)蒽等3和4环的PAHs占较大比例. 5月梧桐树叶中只含有苊和芘,而且浓度较低,分别为0.16 ng/g和0.63 ng/g;7、8月梧桐叶中PAHs总量显著提高,从39.19 ng/g上升到150.94 ng/g.通过相关性推断,焦化厂PAHs主要来源为复合污染; 梧桐叶片中PAHs各组分浓度与土壤和PM10中各组分的浓度均具有极显著的相关性(p<0.01).  相似文献   

19.
北京市大气颗粒物中多环芳烃(PAHs)污染特征   总被引:25,自引:9,他引:16  
对北京市2003-09~2004-07的10个月空气中的TSP样品进行了连续采样,周期为1次/周.分析了15种3~7环的PAHs,其中以4~5环为主.∑PAHs浓度及BaP的最大值分别达到705 ng/m3和52 ng/m3;春夏秋冬4季∑PAHs的平均浓度分别为46 ng/m3,16 ng/m3,52 ng/m3,268 ng/m3;BaP的4季平均浓度分别为2.8ng/m3,0.23 ng/m3,3.3 ng/m3,16ng/m3;采暖期∑PAHs平均浓度为非采暖期的9.5倍.在所分析的3种气象条件中,降水能够明显降低PAHs的浓度;非采暖期的PAHs浓度随温度的升高而降低,采暖期的浓度与温度没有明显的相关性;采暖期风速水平的增加会导致PAHs浓度的下降,而非采暖期不同环数的PAHs和风速水平的关系各异,3环的PAHs浓度随风速水平增加而增加,4、5环的PAHs浓度变化不大,6、7环PAHs随风速水平的增加而浓度下降.  相似文献   

20.
京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源   总被引:5,自引:0,他引:5  
在2013年4个季节,同步采集了京津冀地区3个典型城市(北京市、天津市和石家庄市)空气PM2.5和PM10样品,采用乙腈超声提取-超高压液相色谱法分析了16种多环芳烃(PAHs).结果表明,京津冀地区城市空气PM2.5和PM10中总PAHs的浓度分别为6.3~251.4ng/m3和7.0~285.5ng/m3,呈现冬季>春季>秋季>夏季的季节变化特点和石家庄>北京>天津的空间分布特点.PAHs环数分布以4、5和6环为主,比例分别为25.0%~45.1%、31.7%~40.1%、15.1%~28.2%,2和3环比例之和小于10.3%;与非采暖季相比,采暖季中4环PAHs比例显著增加,5和6环PAHs比例明显下降.PAHs比值法显示,京津冀地区城市空气颗粒物PAHs的来源呈现明显季节性变化特点,燃煤和机动车排放是2个重要的PAHs排放源,在采暖季燃煤来源的比例较大,在非采暖季以机动车排放的来源为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号