首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 711 毫秒
1.
杭州市大气颗粒物浓度及组分的粒径分布   总被引:8,自引:5,他引:8       下载免费PDF全文
分别于2008年11月及2009年4~5月及10月采集了杭州大气颗粒物样本,测定了杭州市大气颗粒物及其化学组分[元素碳(EC)/有机碳(OC)、11种水溶性离子、20种元素]的浓度,并研究了其粒径分布特征.结果表明,杭州市大气颗粒物质量浓度、EC和OC的质量浓度、9种离子(SO42-、NO3-、K+、Na+、Cl-、Ca2+、Mg2+、NO2-、F-)浓度的粒径分布均显双峰结构,峰值分别出现在<0.49μm的细粒径段与3.00~7.20 μm的粗粒径段; OC、EC、SO42-、NO3-、NH4+以及主要来自人为源的元素(Cu、Zn、As、Se、Sb、Cd)主要集中在<3.0μm的细颗粒物中;杭州市大气细颗粒物中二次污染严重,细颗粒物主要受工业、交通等人为源影响.  相似文献   

2.
为了解济南市大气颗粒物的粒径分布特征,于2009年10月利用多级撞击式颗粒物采样器(MOUDI)进行了大气颗粒物采集,采用离子色谱仪分析了其中水溶性离子浓度.结果表明,SO42-、NO3-、NH4+和Ca2+是主要的水溶性离子,浓度总和约占总水溶性离子浓度的92%.SO42-、NO3-、NH4+、K+和Cl-浓度随时间变化较为显著,浓度变化主要原因是受风速以及气流来源方向的影响.SO42-和NH4+主要集中在细粒子中,其浓度呈单模态分布,随着颗粒物中含量的升高其峰值从0.32~0.56 μm粒径段逐渐移动到1~1.8 μm粒径段.NO3-浓度呈双峰分布,细粒子中的NO3-随着浓度的升高峰值从0.56~1μm粒径段移动到1~1.8μm粒径段,粗粒子中的峰值出现在3.2~5.6μm粒径段. NH4+可以完全中和细粒子中的SO42-和NO3-,在细粒子中主要以(NH4)2SO4和NH4NO3的形式存在.  相似文献   

3.
上海市大气颗粒物中水溶性离子的粒径分布特征   总被引:13,自引:4,他引:9       下载免费PDF全文
分析了上海市嘉定区不同粒径的大气颗粒物中9种水溶性离子(SO42-、NO3-、NH4+、K+、Na+、Cl-、Ca2+、Mg2+、F-)的分布特征.结果显示,SO42-、NO3-和NH4+含量很高,占9种离子总和的65%~81%.颗粒物的C/A值平均为1.08,说明颗粒物呈中性,略偏碱,这可能与缺少碳酸根等的测定有关.1.5μm颗粒物中的离子占所有粒径段离子的52%~87%,表明离子主要集中在细颗粒物中.NH4+、K+呈单峰分布,峰值出现在0.95μm的颗粒段;SO42-、NO3-、Ca2+、Cl-呈双峰分布,峰值分别出现在0.95μm和3.0~7.2μm的粒径段,其中SO42-、NO3-的较高峰出现在0.95μm的细颗粒段,Ca2+的较高峰出现在3.0μm的颗粒段,Cl-则两峰高度相当;既有双峰分布又有单峰分布的离子是Na+、Mg2+和F-,3种离子的较高峰出现在3.0μm的颗粒段.离子粒径分布与采样期间的气象条件、离子的形成机制和来源有关.  相似文献   

4.
青岛大气气溶胶水溶性无机离子的粒径分布特征   总被引:7,自引:0,他引:7       下载免费PDF全文
为了解大气颗粒物中水溶性离子的来源及环境效应,利用安德森采样器连续采集青岛近海2008年1~12月大气颗粒物分级样品,用离子色谱法分析其中主要的水溶性离子,并讨论其粒径分布特征.结果表明, NH4+、K+、Cl-、NO3-、PO43-、SO42-主要存在于粒径小于2.1μm的细粒子中,Na+、Mg2+、Ca2+、F-则主要存在于粒径大于2.1μm的粗粒子中.各离子的粒径分布存在明显的季节变化.NH4+、K+和SO42-四季均主要分布于细粒子中,而Mg2+和Ca2+则主要分布在粗粒子中,两者均在3.3~4.7μm出现峰值;Na+在春、夏、秋3个季节主要存在于粗粒子中,集中分布在3.3~7.0μm粒径范围内,而在冬季则集中分布于0.43~1.1μm且细粒子含量高于粗粒子;春季Cl-在粗粒子中分布较多,尤以2.1~3.3μm范围内的最为突出,而其他3个季节均是细粒子比例明显偏高;NO3-春、夏两季在粗、细粒子中的含量各占50%,秋、冬季节均为细粒子占多数;PO43-夏季只出现在0.65~1.1μm以及>11μm的粒径范围内,粗粒子占95%,其他3个季节则是细粒子含量较高;春季F-在3.3~4.7μm出现峰值,夏季各粒径均未检出,而秋、冬两季粗、细粒子各占50%.K+、NH4+、F-、Cl-、NO3-、SO42-和PO43-受供暖期燃煤取暖的影响较大.K+和NH4+在供暖期和非供暖期峰值均出现在0.43~0.65μm粒径范围;F-供暖期在0.43~0.65μm和3.3~4.7μm粒径段出现峰值;供暖期Cl-的峰值出现在0.43~0.65μm粒径段,而在非供暖期,则出现在2.1~3.3μm的粗粒径段;SO42-和NO3-在供暖期和非供暖期的峰值均出现在0.43~0.65μm和3.3~4.7μm粒径段;供暖期PO43-的最大峰值出现在0.43~0.65μm粒径段,而在非供暖期其最大峰值出现在3.3~4.7μm粒径段.  相似文献   

5.
天津市大气能见度与颗粒物污染的关系   总被引:9,自引:0,他引:9       下载免费PDF全文
利用天津市大气边界层观测站2009年能见度、相对湿度、风速逐时观测资料和2009年3月9~21日期间颗粒物的膜采样数据,分析天津市大气能见度与颗粒物污染的关系.结果表明,颗粒物质量浓度与能见度变化总体呈负相关,小粒径颗粒对能见度的影响作用明显,随着能见度的降低,小粒径颗粒与大粒径颗粒浓度的比值明显增加.能见度与颗粒物中总碳质量浓度变化呈负相关. SO42-,NO3-,OC和EC对大气消光贡献平均值分别为28.7%,6.1%,27.6%和19.2%.表明观测期间颗粒物中SO42-,OC对能见度的影响明显.  相似文献   

6.
采用气体悬浮物粒子监测仪和NanoMoudi-Ⅱ125A型分级采样器对某封闭式博物馆进行颗粒物数浓度监测和颗粒物采样,测定了不同粒径段颗粒物中的主要离子组分。结果表明,监测期间粗颗粒物(粒径≥2.5μm)、细颗粒物(粒径在0.1~2.5μm之间)和超细颗粒物(粒径≤0.1μm)质量浓度分别为20.50~24.38μg/m3、23.39~24.08μg/m3和16.02~17.48μg/m3。颗粒物数浓度集中在粒径≤0.3μm范围,PM1数浓度占PM10数浓度的97%以上,游客扰动和清洁活动使粗颗粒物数浓度增加了8~172倍。SO42-、NO3-、NH4+峰值出现在0.32~0.56μm粒径段,Na+、Cl-分布较平均,K+峰值出现在0.32~0.56μm和3.2~5.6μm粒径段,Mg2+的峰值出现在3.2~5.6μm粒径段,Ca2+峰值出现在1.8~3.2μm粒径段;总有机酸根离子无明显峰值;乙酸根离子浓度为1.238μg/m3,高于甲酸根和乙二酸根。颗粒物的阳/阴离子比均值为2.83,说明阴离子测定可能有缺失,如碳酸盐等。颗粒物中水溶性离子浓度水平和粒径分布受游客影响不明显,受室外空气输送的影响较大。  相似文献   

7.
为分析天津市典型城区大气碳质颗粒物的粒径分布及其来源,于2009年12月—2010年11月采用9级惯性撞击式分级采样器对大气颗粒物进行采样,采用热光碳分析仪分析了颗粒物中的EC(元素碳)和OC(有机碳)的质量浓度. 结果表明:天津市典型城区大气颗粒物中EC和OC主要存在于细颗粒物中,在≤2.1μm的4个细粒径段中,ρ(EC)的加和年均值为(2.6±0.9)μg/m3,占PM9(空气动力学直径≤9.0μm)ρ(TEC)的72%;ρ(OC)为(21.5±7.7)μg/m3,占PM9中ρ(TOC)的60%. ρ(EC)和ρ(OC)季节变化显著,在≤2.1μm粒径段中,春、夏、秋、冬季的ρ(EC)分别为(1.7±0.3)、(2.1±0.4)、(3.1±0.5)和(3.7±0.5)μg/m3;ρ(OC)分别为(17.6±0.4)、(14.4±1.1)、(21.9±1.8)和(32.1±2.5)μg/m3. ρ(EC)峰值分别出现在≤0.43、>0.65~1.1和>4.7~5.8μm 3个粒径段,其中最高值出现在≤0.43μm粒径段;ρ(OC)峰值分别出现在>0.65~1.1和>4.7~5.8μm 2个粒径段,最高值出现在>0.65~1.1μm粒径段. 天津市典型城区细颗粒物中的OC、EC主要来自燃煤、机动车和烹饪排放,粗颗粒物中的OC、EC则更多来自于路面和建筑扬尘.   相似文献   

8.
南京城区夏秋季能见度与PM2.5化学成分的关系   总被引:2,自引:0,他引:2  
为研究南京细颗粒物PM2.5化学成分与能见度的关系,于2011年8月4~17日和2011年10月31日~11月11日在南京城区采集PM2.5样品并分析其化学成分,同时对能见度、PM2.5、相对湿度等进行了同步观测.结果表明:南京城区夏季采样期间的能见度高于秋季,分别约为10.9km、7.5km,低能见度天PM2.5质量浓度较高,能见度与PM2.5的相关系数为-0.75.水溶性离子和总碳分别占PM2.5质量浓度的38%和26%,其中与能见度相关性较显著的是NO3-、SO42-、NH4+、EC.总消光系数的主要贡献者是颗粒物,达98.2%.8月首要消光组分是硫酸铵(NH4)2SO4,占47.0%,有机碳OC和硝酸铵NH4NO3分别占19.2%和14.3%;而11月是NH4NO3、(NH4)2SO4和OC,分别占29.3%、28.7%、26.8%.对不同相对湿度下的能见度和PM2.5化学成分进行拟合.进一步根据WRF/Chem细颗粒物化学成分模拟结果,分别利用拟合关系式和美国IMPROVE关系式,对2011年8月和11月能见度进行计算,与观测对比发现,利用本文拟合关系式计算的能见度结果优于IMPROVE关系式.  相似文献   

9.
为认识雾霾天气下颗粒物及其化学组分的粒径分布特征,利用13级低压撞击采样器采集北京城区冬季一次典型雾霾天气下的大气颗粒物,采用离子色谱和元素碳/有机碳分析仪分析了PM10中不同粒径的水溶性离子、元素碳和有机碳组分,获得了颗粒物及其化学成分的粒径分布特征.结果表明,不同天气下颗粒物质量浓度大小为:雾霾多云雪天晴天,4种天气下PM2.5/PM10均大于74%,说明冬季污染主要是由细颗粒物污染引起.SO2-4、NO-3、NH+4、Cl-、Ca2+是最主要的水溶性离子.SO2-4、NO-3、NH+4在0.76μm出现单峰;Ca2+和Mg2+在0.31和5.13~8.09μm出现双峰,主要分布在粗模态;Cl-和K+在0.76和5.13μm出现双峰,主要分布在细粒径段.OC、EC也富集于细粒子,显单峰结构.随污染程度增加,二次无机离子及碳组分浓度均显著增加,SO2、NO2的表观转化率(SOR、NOR)以及OC/EC在灰霾期间都远远高于二级良,可见二次无机源及有机源是污染的主要来源.在空气流动性差的灰霾持续期,机动车尾气排放的EC等一次污染物贡献增加.分析NO-3/SO2-4的粒径分布发现,机动车尾气对爱根核模态及凝结模态的亚微米模态(1μm)贡献大于固定源,机动车尾气排放对大气污染的贡献已十分凸显.此外,燃煤污染的区域输送对污染的形成也有重要贡献,重污染期间土壤扬尘的贡献较小.  相似文献   

10.
秋季南通近海大气气溶胶水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96μg/m3.PM2.1中主要离子质量浓度排列依次为SO42-NO3-NH4+Ca2+.SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1μm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8μm粒径段内;Na+和Cl-峰值出现在0.43~1.1μm和3.3~5.8μm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

11.
天津2009年3月气溶胶化学组成及其消光特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
2009年3月,采集天津城区PM10和PM2.5样品,分析其中的水溶性无机离子、有机碳(OC)和元素碳(EC),并估算其二次有机碳(SOC)浓度及消光系数.结果表明,天津城区PM10和PM2.5污染严重,水溶性无机离子和含碳物质在PM10中的比例为24.8%和10.0%,在PM2.5中的比例为26.6%和13.9%;SO42-、NO3-和Ca2+是主要的无机离子,霾日天气有利于SO2和NO2向硫酸盐和硝酸盐的二次转化;通过OC/EC最小比值法估算SOC的浓度,表明SOC与OC的比值分别为38%(PM10)和24%(PM2.5),霾日天气有利于SOC生成;二次离子(SO42-,NO3-和NH4+)、粗粒子、OC和EC是大气消光的主要贡献者,其消光贡献比例分别为33.1%, 22.6%,22.0%和15.6% 采用化学组分和相对湿度可以较好的拟合大气消光系数及大气能见度.  相似文献   

12.
在世界无车日期间对PM2.5化学组分、光学参数及气态污染物进行同步监测,评估机动车尾气排放对杭州市细颗粒物污染及能见度的影响.结果表明:管制期间NO2、NOx、CO和PM2.5浓度分别为45.0, 50.8, 1119, 85.8μg/m3,比平日分别下降了17.5%、23.3%、20.6%和32.6%.管制期间PM2.5中OC、EC和二次无机组分浓度为8.58, 4.29, 25.95μg/m3,比管制前下降了13.8%、12.6%和15.7%,管制后则达到20.24, 10.85, 27.39μg/m3,上升了136.0%、152.7%和5.5%.管制期间较高的NO3-/PM2.5和NOR(0.15)表明PM2.5的形成更多受二次无机转化影响,管制后PM2.5中上升的OC、EC比例和较低的NOR(0.07)则说明PM2.5主要来自机动车排放的碳质组分的贡献.硫酸盐、硝酸盐、有机气溶胶和EC是最主要的消光组分,共解释了总消光系数的74.0%~89.7%.管制后,机动车排放的有机物和EC消光比例达到26.6%和24.6%,大气消光系数则达到438.7Mm-1,比管制期间上升了60.5%,表明机动车污染排放已成为影响杭州大气细颗粒物污染和能见度下降的重要因素.  相似文献   

13.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

14.
为研究雾霾天气下SO42-、NO3-和NH4+的形成机制,2013年4月18~23日,使用6级Anderson大流量采样器采集了不同粒径段的气溶胶样品,并利用离子色谱对其中的水溶性无机离子进行了分析.结果表明,广州雾霾期间PM3和PM10中总水溶性无机离子平均浓度分别为(32.7±13.3)μg/m3和(39.4±15.7)μg/m3.SO42-、NO3-和NH4+是最主要的水溶性离子,它们在PM3和PM10中占总离子质量分数分别为76%和71%.3种离子主要集中在0.49~1.5μm的液滴模态,该模态中NH4+主要以(NH4)2SO4和NH4NO3的形式存在,而凝聚模态的NH4+则主要以(NH4)2SO4和NH4HSO4的形式存在.液滴模态的SO42-主要来自雾内或颗粒表面的液相氧化反应,NO3-主要来自夜间N2O5在颗粒表面的水解反应,NH4+主要来自NH3在颗粒上进行的非均相中和反应,而这3种离子在该模态的日变化特征则很好的反映了以上的形成机制.受太阳辐射的影响,3种离子的浓度在凝聚模态均表现为白天高于夜晚.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号