首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
夏季渤海湾及邻近海域颗粒有机碳的分布与物源分析   总被引:10,自引:3,他引:7  
根据2006年8月在渤海湾及其邻近海域41个站位取得的155个样品的颗粒有机碳(POC)和颗粒氮(PN)的分析数据,结合同步获得的水文环境要素资料,分析了该区夏季POC和PN的空间分布特征、影响因子与有机碳物源.结果表明,夏季水体中POC的浓度为155.9~1363.1 μg/L,平均浓度为429.5 μg/L; PN的浓度为26.2~225.5 μg/L,平均浓度111.5 μg/L. POC与PN的空间分布特征一致,呈现近岸高、远岸低、表层低、底层高的特点. 生物作用、水体温盐跃层和总悬浮颗粒物(TSM)是影响研究区POC空间分布的重要原因. POC与TSM的相关分析表明,POC与TSM之间具有正相关关系,不同来源的TSM是控制水体中POC浓度高低的重要因素. 本区POC/PN的比值范围为3.4~7.0,但这一物源指标的应用受到海水中颗粒无机氮(PIN)的影响. 通过建立POC和PN的一元线性回归模型,估算了样品中PIN的含量. 扣除样品中PIN的影响后,本研究区的POC/PON (颗粒有机氮) 比值范围介于5.5~19.8之间,显示POC除了海洋生物为主要来源外,周边河流的陆源输入也有重要贡献.这一研究方法对认识中国近海的POC物源具有一定的参考价值.  相似文献   

2.
春、冬季长江口颗粒有机碳的时空分布及输运特征   总被引:1,自引:0,他引:1       下载免费PDF全文
根据2012年2月(冬季)、5月(春季)对长江口2个航次的调查数据,分析了春、冬季长江口颗粒有机碳(POC)的时空分布及影响因素,并探讨其输运特征.结果表明:2012年春季长江口POC的浓度为0.23~31.61mg/L,均值为2.55mg/L;冬季POC的浓度为0.16~5.82mg/L,均值1.42mg/L.春、冬季POC空间分布整体呈现近岸高远岸低、表层低底层高的特征,最高值均出现在口门附近.POC与悬浮物(TSM)呈极显著线性正相关,而与叶绿素a(Chl a)的相关性均较差,表明陆源输入对长江口POC的分布影响很大;POC/Chl a比值测算表明有机碎屑是调查水域POC的主要来源和存在形式,定量估算结果表明浮游植物生物量对春、冬季长江口POC的贡献分别仅1.26%和0.9%,且浮游植物对POC的贡献分别在TSM小于110mg/L和100mg/L时才能表现出来.春、冬季长江口TSM分别在大于117mg/L和335mg/L时,有机碳入海以颗粒态为主,反之则以溶解态为主.长江输送至河口的悬浮物中POC的百分含量(POC%)在春、冬季分别为0.9%和0.4%.春、冬季长江口最大浑浊带对POC的过滤效率分别达89%和69%,大量POC随泥沙在最大浑浊带发生了沉降.  相似文献   

3.
2012年夏季长江口颗粒有机碳、氮分布特征及其来源   总被引:5,自引:2,他引:3  
邢建伟  线薇微  绳秀珍 《环境科学》2014,35(7):2520-2527
基于2012年8月对长江口及其邻近海区的调查资料,分析了长江口夏季颗粒有机碳(particulate organic carbon,POC)、颗粒氮(particulate nitrogen,PN)的空间分布特征及其与环境因子的关系,并结合C/N摩尔比值和叶绿素a(chlorophyll a,Chl a)探讨了POC的主要来源及浮游植物的贡献.结果表明,2012年夏季长江口POC的质量浓度范围在0.68~34.80mg·L-1之间,均值为3.74 mg·L-1;PN的质量浓度范围为0.03~9.13 mg·L-1,均值0.57 mg·L-1,二者浓度均表现为底层高于表层.POC和PN平面分布相似,高值区均出现在口门附近和调查海区西南部,并向外海浓度迅速降低,整体呈现近岸高、远岸低的趋势,与总悬浮物(total suspended matter,TSM)的平面分布规律基本相同;POC与PN间呈极显著正相关,表明二者具有高度的同源性.POC、PN与TSM、化学需氧量(chemical oxygen demand,COD)间均呈现极显著线性正相关,而与盐度(salinity,S)和Chl a的相关关系较弱,表明POC和PN的分布受陆源输入的影响较大,浮游植物生产不是该水域颗粒有机碳、氮的主要来源.C/N摩尔比和POC/Chl a法分析表明夏季长江口POC主要为陆源,有机碎屑是POC的主要存在形式.定量估算结果表明,浮游植物生物量对夏季长江口表层POC的平均贡献率仅为2.54%,非生命POC占绝对优势地位.  相似文献   

4.
根据2009年和2014年夏季在乳山湾口及邻近海域的综合调查结果,分析了该海域夏季有机碳的时空分布、底界面过程与影响因素.结果表明,2009年夏季乳山湾近海水体溶解有机碳(DOC)含量介于0.70~3.19mg/L之间,平均值为1.80mg/L;DOC的平均值在8月最高,7月与9月次之,6月最低;2014年8月份DOC的变化范围为1.79~15.2mg/L,高于2009年同期水平,颗粒有机碳(POC)的变化范围为0.04~1.33mg/L;水体有机碳的分布受陆源输入、海洋初级生产以及潮汐的显著影响.研究区域夏季颗粒有机碳(POC)的沉降通量为(25±0.8)g/m~2,约占初级生产固碳量的66%;沉积物上层(0~4cm)间隙水中DOC的浓度是沉积物上覆水的8~9倍,DOC在沉积物—水界面存在向上覆水释放的现象;乳山湾湾口DOC交换通量为14.4–97g/(m~2·a),占水体存量的1.1%~13.4%.人类活动一定程度上影响了乳山湾及其近海有机碳的构成与循环收支过程,是区域环境变化的重要驱动因子之一.有超过50%的有机碳会随潮流输送到外海,显示潮流在有机碳输送中巨大作用;沉积物-水界面DOC的交换会影响底界面有机碳的收支与循环过程,有机碳的收支表明研究海域底界面有机碳的降解所产生的溶解有机碳是水体DOC的重要来源,最终保存在沉积物中的碳其埋藏量约占初级生产的13%;相对较低的溶解氧水平可能会增加DOC的交换通量,影响碳在陆架边缘海的埋藏.  相似文献   

5.
依据2015年11月对长江口及其邻近海域的综合调查,分析了秋季长江口颗粒有机碳(POC)和溶解有机碳(DOC)的分布特征及其与环境因子的关系。结果表明:2015年秋季长江口POC的质量浓度为0.65~8.25 mg/L,均值为1.34 mg/L,整体呈现近岸高、远岸低,表层低、底层高的分布趋势;DOC的质量浓度为0.77~2.69 mg/L,均值为1.49 mg/L,整体表现为近岸高、远岸低,表层高、底层低的变化特征。有机碳与总悬浮颗粒物(TSM)的线性回归关系表明,陆源输入对POC含量分布贡献很大;有机碳和盐度(S)的极显著相关性说明,S对有机碳的影响主要体现在海水对有机碳的稀释作用及促进POC向DOC转化两个方面;DOC与COD的显著相关性,揭示了DOC的来源与长江径流和河口沿岸工农业排污输入密切相关。  相似文献   

6.
研究湖水溶解有机碳(Dissolved organic carbon,DOC)和颗粒有机碳(Particle organic carbon,POC)的空间变化特征有助于揭示湖泊有机碳的来源、迁移转化过程与控制因素。本文通过对贵州百花湖分层期水体DOC和POC浓度及其碳稳定同位素组成的对比研究,揭示了百花湖分层期水体有机碳浓度及稳定碳同位素的空间分布特征。研究结果表明,百花湖夏季分层期水体DOC和POC的浓度范围分别为1.97~3.26mg/L(平均值2.58mg/L)和0.60~2.43mg/L(平均值1.14mg/L),且呈现出"上层高、下层低"的特征。水体DOC和POC浓度主要受藻类活动控制。水体δ13 CDOC值随深度增加呈偏正趋势,这可能是由深层水体溶解有机质发生矿化作用和分解作用所致。水体δ13 CPOC值随水体深度增加呈偏负趋势,上下层水体藻类生产力差异和沉积物再悬浮作用可能是导致该现象的主要原因。受光降解作用影响,百花湖水体δ13 CDOC较δ13 CPOC偏正。  相似文献   

7.
依据不同季节的调查,对渤海水体中颗粒有机碳(POC)的时空变化特征、碳库及影响因素进行对比研究.结果表明:春、夏、秋和冬季渤海调查海域颗粒有机碳的平均浓度分别为(338±146)μg/L、(491±136)μg/L、(358±228)μg/L和(2534±2601)μg/L,其中冬季渤海水体中POC浓度最高约是春季的7倍.不同季节渤海调查海域POC分布具有相似的规律,即由近岸浅水区向远岸逐渐降低,高值区多集中在调查海域北侧近岸、黄河入海口以及渤海湾等处.不同季节影响POC分布的因素不同,春、夏和秋季影响渤海调查海域POC分布的因素主要是陆源输入和浮游植物的生长繁殖,沉积物再悬浮是影响冬季渤海调查海域POC分布的主要因素.通过C/N比值探究不同季节渤海水体中POC来源发现,春季有45.3%、52.8%样品的C/N比值分别介于2.6~4.3和4~10之间,夏季有38.7%、32.3%样品的C/N比值分别介于2.6~4.3和4~10之间;秋季有84.4%样品的C/N比值介于4~10;而冬季有72.2%样品的C/N比值大于12,可见渤海水体中POC来源具有季节性差异,春季和夏季渤海调查海域POC主要来源于海洋生物的代谢活动,秋季渤海水体中POC的主要来源是浮游植物,冬季渤海POC的主要来源是再悬浮物作用下沉积物中保留下来的有机物.渤海POC碳库呈季节性变化,春、夏和秋季渤海调查海域POC碳库在6×105~7×105t范围内,冬季碳库最高,为2.5×106t.  相似文献   

8.
夏斌  马绍赛  陈聚法  赵俊  陈碧鹃  王芳 《环境科学》2010,31(6):1442-1449
根据2008-08-09~2008-08-13在南黄海西部绿潮(浒苔)暴发区取得的溶解有机碳(DOC)、颗粒有机碳(POC)和颗粒氮(PN)的分析数据,结合同步获得的水文环境要素资料,研究了该区域有机碳的分布特征、来源、影响因素以及浮游植物的固碳强度.结果表明,DOC的浓度范围为1.55~3.22mg/L,平均值为2.44mg/L;POC的浓度范围为0.11~0.68mg/L,平均值为0.27mg/L.DOC与POC的分布特征基本一致,呈现近岸高,外海低;表层高,底层低的趋势.POC与TSS的相关分析表明,POC与TSS整体上呈显著正相关,表明TSS的浓度和来源是控制POC浓度高低的重要因素.通过建立POC与PN的一元线性回归模型,估算了样品中PIN的含量.扣除样品中PIN的影响后,沿岸大部分海域POC/PON的平均值8,结合POC/Chl-a比值,表明沿岸海域POC主要是海洋有机质来源,并且存在降解有机物,这可能是调查期间处于绿潮暴发后期,部分浒苔开始腐烂被降解所致.应用初级生产力估算的浮游植物固碳强度的结果表明,南黄海西部绿潮(浒苔)暴发区浮游植物的固碳强度变化范围为167~2017mg/(m2·d),平均为730mg/(m2·d),该区域日固碳量达到2.95×104t.换算至整个黄海,日固碳量为28.03×104t.  相似文献   

9.
冬季黄东海颗粒有机碳的时空分布特征   总被引:1,自引:0,他引:1  
根据2007年1~2月对黄东海大面调查的资料,分析研究了黄东海颗粒有机碳(POC)的时空分布特征。结果表明,冬季黄东海POC的浓度范围是2.49~1 658.96μg/L,平均浓度为125.88μg/L。在垂直方向上,POC由上而下随着水深的增加浓度逐渐降低,到底层后浓度又升高。在平面分布上,POC整体上呈现西部近岸浓度较高、东部离岸浓度较低的特点;POC的高值区集中在浙江近岸海区,特别是浙江舟山群岛南部近海,POC浓度非常高,这是受陆源输入和沉积物再悬浮的共同作用。在周日变化上,受潮汐作用和海区生物活动的影响,东海陆架中部海域除底层以外,其它各层POC在午后、傍晚、凌晨出现浓度的高峰值,而西南海域,除了底层外,其它各层均表现出全日周期变化。  相似文献   

10.
2008年12月对黄河三角洲北部及其毗邻海域悬浮体浓度(SSC)和颗粒有机碳(POC)进行了研究,并结合该海域水文资料,分析了该区冬季SSC和POC的空间分布特征和影响因素.结果表明,冬季研究区水体中的SSC变化范围较大(5~1064mg/L),表、底层的SSC高值区(>600mg/L)均呈条带状分布于废弃神仙沟-钓口三角洲附近海域,且随水深加大SSC快速降低(400μg/L)集中于近岸海域,渤海中部POC仅为20~50μg/L左右,但底层POC向渤海湾中部扩散范围比表层大.POC和SSC之间存在显著正相关关系,表明该海区近岸浅水区沉积物再悬浮是影响研究区POC空间分布的重要原因.冬季SSC和POC高值区与最大侵蚀区、波致底切应力>0.2N/m2的区域相对应,表明在冬季强海洋动力条件下,废弃神仙沟-钓口三角洲叶瓣前缘不仅是沉积物的“源”,也同样是颗粒有机碳的“源”.  相似文献   

11.
南京大气PM2.5中碳组分观测分析   总被引:17,自引:1,他引:16       下载免费PDF全文
为了解南京地区大气细颗粒物及化学成分在灰霾期间的污染水平及可能来源,于2007年6月至2008年5月,采集PM2.5样品,并测定了其中有机碳(OC)和元素碳(EC)的含量.并考察了有机碳和元素碳的季节变化特征,比较分析了南京地区灰霾与非灰霾期间含碳气溶胶的污染特征.结果显示,南京大气中PM2.5、OC和EC浓度变化范围分别是12.1~287.1,2.6~47.0和1.0~33.6mg/m3,其中夏季PM2.5(109.6mg/m3)和OC(20.8mg/m3)的值在四个季度中最高,呈现出夏季>秋季>冬季>春季的季节变化特征;EC则具有秋季>春季>冬季>夏季的季节变化特征. 霾日的OC、EC、总碳含量(TC)浓度及OC与EC比值分别是非霾日的2.0、1.8、1.9和1.7倍.后向轨迹分析表明,在有利的天气背景下,具有丰富水汽和污染物的混合气团最易使南京产生霾天气.  相似文献   

12.
2015年至2016年间,对钦州湾海域开展了四个航次调查研究,结合其它理化环境因子,对该海域尿素含量和浮游植物脲酶活性季节分布特征及影响因素以及尿素的来源和生物可利用性进行了初步探讨。结果表明,钦州湾表层水体中尿素分布呈现明显的由内湾向外湾递减的趋势,含量范围为0.24~5.14 μmol N/L,平均值夏季>春季>冬季>秋季,其中夏季尿素平均值为3.30 ±1.14 μmol N/L。浮游植物脲酶活性为0.15~2.60 μmol N/(L·h),冬季浮游植物脲酶活性最高,平均为0.91 ±0.55 μmol N/(L·h),其次是秋季和夏季,春季脲酶活性最低。不同季节尿素含量均≥1.00 μmol N/L,占溶解态有机氮(DON)的1.2%~63.0%,平均值为(15.6 ±14.2)%,表明尿素是钦州湾海域的重要氮源。钦州湾尿素含量和分布主要决定于陆源输入,尿素是DON的重要组成部分,故钦州湾DON具有较高的生物可利用性,为该海域浮游植物生长提供重要的氮源。  相似文献   

13.
针对广州市连续1 a内降雨展开碳丰度的研究,通过对雨水中总有机碳(TOC)、可溶性有机碳(DOC)、颗粒物有机碳(POC)和颗粒物元素碳(PEC)的测定,进一步探讨雨水中碳丰度的季节性特征及其对酸雨形成的贡献作用.结果表明,TOC年均含量7.10 mg/L,DOC年均含量3.58 mg/L,POC年均含量3.60 mg/L,PEC年均含量O.72 mg/L,证明广州市污染物排放对降雨影响较严重.雨水中碳丰度具有一定季节性特征,TOC和DOC含量春季最高,夏季较低,表明广州市春季的总污染物排放量相对大于其它季节;POC对TOC的贡献率夏季要明显高于其它季节,说明固体颗粒物的排放量在夏季达到最高;干季POC相对含量要明显高于湿季,表明由机动车尾气排放导致的有机污染物排放量在秋冬季节要明显高于其它季节.TOC、DOC含量与pH值具有一定负相关性.这些特征从碳丰度角度证明机动车尾气等有机污染物排放对酸雨形成有一定的贡献作用.  相似文献   

14.
利用主动观测技术对宁东能源化工基地大气PM2.5、PM1.0和气相中的PAHs浓度水平、族谱特征、时空分布及来源进行研究,并基于该观测数据对居民呼吸暴露健康风险进行评估.结果表明,宁东基地大气PM2.5、PM1.0及气相中∑16PAHs浓度范围分别为:17.95~325.12ng/m3、12.66~311.96ng/m3和26.33~97.88ng/m3,年均浓度分别为(99.42±117.48)ng/m3、(78.88±100.58)ng/m3和(57.89±47.39)ng/m3.宝丰基地冬夏季大气PM2.5、PM1.0和气相中∑16PAHs浓度水平均明显高于英力特;宝丰和英力特基地冬季大气PM2.5、PM1.0中∑16PAHs浓度水平均明显高于夏季浓度.宁东基地大气中∑16PAHs的浓度水平要高于国内外其他城市,大气PAHs污染较为严重.源解析表明夏季宁东基地PAHs的主要排放源是工业煤燃烧和机动车尾气,冬季则主要来自工业煤燃烧和木材、薪柴等生物质燃烧排放.宁东基地人群暴露于大气PAHs可能会造成平均冬季每百万人中约有33~2628人罹患癌症,夏季每百万人中约有11~834人罹患癌症的风险.  相似文献   

15.
流沙湾溶解氧的分布特征及其相关因素的探讨   总被引:8,自引:2,他引:6  
2008年2月、5月、8月和11月四个航次对流沙湾海水中溶解氧进行详细的调查和研究,同时分别测试其温度、盐度、TOC、COD、叶绿素a等水质指标,通过统计分析,得出流沙湾DO的分布特征,并针对DO与其相关因素之间的关系进行探讨。结果表明:在整个调查海域内,秋冬季溶解氧呈现由外湾向内湾,由南向北逐渐递增的分布趋势;春季溶解氧则呈现由外湾向内湾逐渐递减的分布趋势,站位之间变化幅度较大(4.49~7.71mg/L);夏季内湾和外湾海水中溶解氧的含量较为平均,各站位之间变化幅度较小(5.93~6.99mg/L)。表层海水溶解氧平均含量(6.60mg/L)稍高于底层海水(6.33mg/L)。秋冬季溶解氧的平均含量(7.40mg/L、7.85mg/L)普遍高于春夏(6.26mg/L、6.46mg/L)两个季度,站位7底在四个季度中溶解氧均处于低值区。随着水温升高,氧的溶解度降低,随着盐度升高,溶解氧含量也有下降趋势,冬季和春季的线性关系较为显著。DO和COD随季节变化的规律一致,与TOC的季节变化规律相反。溶解氧与叶绿素a在冬季呈现极显著正相关。春季次之,夏秋两季两者之间不存在相关性。  相似文献   

16.
贵阳地区大气降水中δ15N-NO3-组成及来源分析   总被引:7,自引:1,他引:6  
对贵阳地区2008年10月1日至2009年9月30日大气降水样品中的NO3-浓度和δ15N组成进行了测定.结果表明,这一年大气降水中NO3-浓度加权平均值为0.45mg·L-1,δ15N组成的变化范围为-8.0‰~28.7‰,年均值为2.3‰,且主要来源于燃煤释放的含氮物质.NO3-浓度呈现冬高夏低的变化趋势,这可能是受降水量等因素的影响.但δ15N组成的季节变化与NO3-浓度有所不同,呈现秋冬季偏正,而春夏季偏负的特征,推测可能是由生物释放氮、大气雷电固氮及NOx本身的大气行为等引起δ15N组成的季节差异.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号