首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
污泥投配率对污泥中温厌氧消化效果影响的试验研究   总被引:1,自引:0,他引:1  
试验装置采用半连续流污泥中温厌氧消化反应器,污泥培养接近成熟后开始每天按不同污泥投配率加泥和排泥.结果表明:污泥投配率在3%~10%时,有机物分解率先增大后减小,去除率均在30%以上;污泥投配率在15%和20%时,污泥的有机物去除率非常小;污泥投配率在5%时,有机物分解率最大为41.2%;单位VSS产气量随污泥投配率的增大而呈先急剧上升后逐渐下降的趋势,当污泥投配率为5%时,单位VSS产气量为0.60 L/g,符合美国污水处理厂设计手册标准,其他污泥投配率下该指标均小于0.4 L/g.因此,认为实验用污泥中温消化的最佳污泥投配率为5%,这时污泥的可消化性较好.  相似文献   

2.
中温条件下,采用浓缩消化一体化反应器处理污泥,考察稳定运行阶段投配率、搅拌和容积负荷对反应器的运行效果的影响。研究结果表明,投配率在10%~20%之间,排泥的含水率有所降低,之后随着投配率的增加,排泥含水率急剧升高;投配率由10%至30%增加过程中,排泥有机物(VS)的去除率和产气量也呈上升的趋势,投配率由30%再增加时,VS的去除率和产气量急剧下降。搅拌对排泥的含水率影响较小,但能够提高VS去除率和产气量。随着进泥容积负荷的增大,反应器排泥含水率逐渐增大;随着容积负荷在一定范围内的增加, VS去除率也随之提高。  相似文献   

3.
城市污泥含有大量有机物和病原菌,需要稳定化处理。采用新型工艺高温微好氧与中温厌氧两级消化工艺(ATMD-MAD)处理城市污泥,与全程厌氧消化工艺(MAD)相比,不仅回收能源气体甲烷,而且缩短稳定化停留时间。55℃高温微好氧消化停留时间为2 d,后接35℃中温厌氧消化共运行24 d。结果表明,在ATMD-MAD系统中污泥的挥发性悬浮固体VSS去除率能在22 d时达到污泥稳定化要求的40%以上。ATMD-MAD工艺的单位VSS甲烷产量最高为496 m L/g VSS高于MAD工艺。在消化的前14天,可溶性挥发有机酸VFA在ATMD-MAD系统中的总量比MAD高出20%;在消化的第2天,ATMD-MAD系统中可溶性COD(SCOD)高出MAD工艺43.8%。ORP的变化反映了ATMD-MAD工艺保持了较好的厌氧状态,消化开始时的头2天限量曝气并没有给厌氧带来冲击。  相似文献   

4.
基于污泥固体停留时间(SRT)为20 d的污泥中温厌氧消化实验,建立一个3层BP神经网络,以前1~20 d的进泥挥发性悬浮固体(VSS)、当天消化罐pH值和碱度共22个参数为输入,预测污泥消化系统日产气量,结果表明,网络具有良好的学习能力、泛化能力和辨识能力,能够较为准确地预测出系统日产气量.此外,根据进泥VSS不同,利用网络预测能力,调节pH值和碱度到合适的值,系统日产气量有明显提高,进一步证明了网络具有良好的预测能力和实用性.  相似文献   

5.
以不同含固率剩余污泥为研究对象,在超声联合热碱预处理条件下,考察了污泥在厌氧消化过程中的减量以及细胞物质释放的特性。厌氧消化阶段,经过预处理作用的预处理泥挥发性悬浮固体(VSS)、溶解性COD(SCOD)的去除率均高于原泥,且VSS、SCOD去除率均随污泥含固率的增加而减少,SCOD去除率(X_(SCODr),%)和产气量(Y_(QY),mL/g)存在定量函数关系,即Y_(QY)=-0.148 7 X~2_(SCODr)+24.771 X_(SCODr)-775.68,同时SCOD去除率与VSS去除率(X_(VSSr),%)存在线性关系X_(SCODr)=0.533 3 X_(VSSr)+43.411。预处理对污泥在厌氧消化阶段氨氮、磷酸根磷的影响也随含固率的增大而减小,含固率为1.5%的预处理泥氨氮、磷酸根磷浓度相较原泥增幅最大,依次增长了97.3%、166.0%。  相似文献   

6.
污泥同时浓缩消化新型反应器的开发研究   总被引:3,自引:0,他引:3  
针对污泥厌氧处理的问题,对污泥浓缩消化一体化反应器进行了开发研究,提出了ICSTD、MISTD和TISTD 3套反应器,反应器由内外2个反应室组成,采用沼气搅拌或机械搅拌。3套反应器的试验结果表明:在中温条件下,进泥含水率98.3%~99.8%,VS/TS 0.52~0.69时,排泥含水率87.4%~97.3%,VS/TS 0.23~0.51,产气量8.2~76.6 L/d,其浓缩和消化效果优于其他反应器。  相似文献   

7.
为了考察絮凝污泥与剩余活性污泥混合中温(35℃)厌氧消化效果,分析了不同混合比例、不同投配率下的总化学需氧量(TCOD)去除率、挥发性固体(VS)降解效果,通过p H值与氨氮浓度的变化来分析各反应器的稳定性。结果表明:污泥混合后消化效果明显得到提高,且污泥消化效率随着投配率的增加先提高后下降。5%投配率时,絮凝污泥/剩余污泥(VS比)为1∶2时厌氧消化效果最好,TCOD去除率达到47.8%,VS降解率达到46.8%,分解单位VS产气量达到了435 m L/g,p H值与氨氮浓度分别保持在7.4和269 mg/L左右,混合污泥厌氧消化系统较稳定。这说明与剩余污泥的混合消化能有效提高絮凝污泥的厌氧消化性能。污泥絮体的显微分析表明:厌氧消化过程中絮体面积百分比逐步减小,污泥结构逐步解体,可以解释污泥消化的微观过程。  相似文献   

8.
采用高铁酸钾与碱耦合工艺处理剩余污泥,分析其对污泥的减量及溶胞效果的影响。结果表明,高铁酸钾与碱耦合处理时,污泥减量效果较单独高铁酸钾处理明显提高,最佳耦合方式为高铁酸钾与碱同时投加处理,适宜的碱性物质为NaOH;高铁酸钾与碱耦合处理能有效破坏污泥絮体及细胞结构,导致污泥减量,胞外聚合物(EPS)和胞内物质大量溶出。当高铁酸钾投加量为0.24g/g(以污泥中单位质量SS的投加量计,下同),NaOH投加量为6mmol/g时,耦合处理24h后挥发性悬浮固体(VSS)去除率达25.92%,处理后的污泥离心泥饼含固率增加,污泥体积指数(SVI)降低,污泥脱水性能及沉降性能明显提高,显微镜检表明耦合处理后污泥絮体明显解离,说明高铁酸钾与碱耦合工艺具有较好的污泥减量及溶胞作用。  相似文献   

9.
本文以高温酸化——中温甲烷化两相厌氯消化工艺为主,对城市污水厂污泥进行了两相厌氧消化工艺与传统厌氧消化工艺的比较研究。结果表明,在总停留时间均为10天的情况下,两相消化工艺对VSS的去除率比中温传统消化工艺提高50%左右,比高温传统消化工艺提高35%左右。高温酸化0.5天后,中温甲烷化8.5天,即可达到中温传统法20天的处理效果。另外,该两相厌氧工艺对大肠杆菌群和粪源大肠杆菌群的灭活量在2~3个数量级,灭菌效果优于中温传统法,且产甲烷反应器中保持较高的缓冲能力。因而,高温酸化——中温甲烷化两相厌氧消化工艺可达到对城市污水厂污泥的稳定和灭菌,是一种高效可靠的新型污泥处理工艺,具有较大的实用价值。  相似文献   

10.
ICSTD反应器处理污泥的启动试验研究   总被引:1,自引:0,他引:1  
新型内循环污泥浓缩消化反应器(ICSTD)处理污泥的启动运行试验采用某污水处理厂二沉池好氧活性污泥进行驯化培养,使反应器正常启动运行。在日处理量为50 L/d,进泥含水率为99.23%~99.46%,进泥VS/TS为0.65~0.73,进泥COD为4 115~5 780 mg/L,反应器容积负荷为1.31 kg COD/(m3·d)时,排泥含水率在96.2%~97.3%,排泥VS/TS为0.48~0.57,COD去除率在95%以上,出水pH在6.6~7.1,且上清液澄清。试验结果表明: ICSTD反应器处理污泥的启动试验,采用直接培养污泥启动的方式培养厌氧污泥历时66 d,能较快地培养厌氧污泥且运行稳定,对污泥的浓缩消化起到较好的作用,同时对反应器后续运行的消化效果提供了一个良好的条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号