首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对核电站主泵电机绕组温度的预测问题,提出了基于自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和门控循环单元(gated recurrent unit,GRU)的预测模型。首先使用CEEMDAN对采集到的绕组温度序列进行分解,经过分量重构得到其高、低频分量和趋势项,在此基础上分别构建各分量的GRU预测模型,将各分量的预测结果叠加集成得到绕组温度的整体预测值。仿真结果表明,与传统的循环神经网络(recurrent neural network,RNN)、长短期记忆(long short-term memory,LSTM)模型和GRU模型相比,本文提出的预测模型在多元评价指标方面均优于其他模型,具有更高的预测精度,验证了该模型的可行性。  相似文献   

2.
陈聪  候磊  李乐乐  杨鑫涛 《科学技术与工程》2021,21(27):11663-11673
利用从飞机快速存储记录器(quick access recorder, QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network, RNN)及其改进网络门控循环单元(gate recurrent unit, GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time, BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error, MSE)值分别为0.001 08、0.000 97。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够"记忆"更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。  相似文献   

3.
汽轮机热耗率是火电机组运行过程中的一项重要监测指标。为建立更加准确的汽轮机热耗率预测模型,借助某1 000 MW火电机组的真实历史数据,提出一种基于双向门控循环单元(gated recurrent unit,GRU)神经网络的汽轮机热耗率预测模型。针对火电机组现场运行数据噪声大的问题,采用SG(Savitzky-Golay)滤波器对所选变量数据进行降噪处理,将处理后的数据作为建模样本构建双向GRU神经网络汽轮机热耗率预测模型。并将其与BP(back propagation)神经网络、传统循环神经网络等2种算法的模型预测结果进行对比,结果表明:双向GRU神经网络热耗率预测模型的预测精度更高,泛化能力和鲁棒性更强,能够满足现场的实际需求。  相似文献   

4.
张弛  李艳  王鹏  刘沛  梁科森 《科学技术与工程》2022,22(32):14443-14450
全断面隧道掘进机(tunnel boring machine, TBM)一个正常掘进循环分为空推段、上升段和稳定段三个阶段,其中稳定掘进段为主要施工阶段,稳定段掘进性能的好坏是TBM掘进的关键。为实现TBM安全高效掘进,建立一种基于门控循环单元(gated recurrent unit,GRU)神经网络的预测模型,预测TBM稳定段掘进性能。模型以新疆某供水工程Ⅱ标段TBM施工数据为依托,5种掘进循环上升段主要参数的时间序列数据作为主要输入,围岩等级作为辅助输入来考虑岩体对掘进性能的影响,输出为稳定段的总推进力和刀盘扭矩,为稳定段TBM性能预判提供参考。为显示预测效果,对比传统循环神经网络(recurrent neural network,RNN)预测模型,并分析不同长度时间序列输入对模型预测精度的影响。结果表明:GRU模型预测拟合优度均在0.9以上,平均绝对百分比误差均小于12.25%,同时能够适用不同长度时序输入。由此可见,所建模型具有较高预测精度,泛化能力较好,能够辅助预判掘进机稳定段性能。  相似文献   

5.
为了提高移动通信场景下,毫米波(millimeter wave,mmWave)大规模多输入单输出(multiple input single output,MISO)系统传输的稳定性,针对快速准确跟踪和阻碍判断问题,提出将波束跟踪和阻碍判断的联合预测问题定义为一个波束状态时间序列预测问题,设计了相应的联合预测数据集;基于门控循环单元(gated recurrent unit,GRU)模块设计未来波束状态预测方案,提出分布式固定输入门控循环单元(gated recurrent unit fixed input,GRU-FIN)训练方案,用来提高模型预测能力。通过仿真实验与3种基线方案进行对比,分析了迭代次数、天线数量、信噪比和神经网络参数设置对预测模型性能的影响。仿真结果表明,在不需要信道状态信息的情况下,该方案能够拟合移动用户非线性波束状态的变化,并且在观察范围较小的情况下,通过GRU-FIN方案和模型参数设计,能够有效提高波束状态的预测能力。  相似文献   

6.
吸收塔内浆液的PH值是影响燃煤电厂湿法脱硫系统效率的重要参数。燃煤电厂的湿法脱硫系统具有大滞后、非线性、强耦合等特征,因而其吸收塔浆液的PH值很难实现精准控制。本文利用门控循环单元(gated recurrent unit, GRU)神经网络在处理时间序列数据的优越性,对吸收塔内的浆液PH值进行预测建模,通过将燃煤电厂采集的影响浆液PH值的变量数据作为模型的输入,对模型进行训练处理,获得吸收塔内浆液PH值的预测模型。将预测模型应用于辽宁省华能营口电厂600MW机组湿法脱硫智能控制系统中吸收塔内浆液PH值的预测。结果表明相比于反向传播(back propagation, BP)神经网络模型、径向基函数(radial basis function, RBF)神经网络、循环神经网络(recurrent neural network, RNN)和长短期记忆(long and short term memory, LSTM)神经网络,该模型精确度更高,实用性更强。  相似文献   

7.
为减少信号传输质量和距离估计算法等因素对定位精度的影响,将深度学习应用于超宽带(ultra wide band,UWB)室内定位系统,利用门控循环单元(gated recurrent unit,GRU)网络代替传统UWB室内定位系统中的三边测量过程,以提高UWB室内定位精度。在得到定位标签到基站的距离信息后,将距离信息输入GRU网络中,输出最终位置坐标。GRU作为循环神经网络(recurrent neural network,RNN)的变种,既含有RNN处理时序数据的优势,又解决了RNN中的长程依赖问题。对GRU网络模型中不同学习率、优化器、批量大小、网络层数、隐藏神经元数量参数进行调整和训练。结果表明,基于GRU网络模型的UWB室内定位系统显著提高了定位精度,平均定位误差为6.8 cm。  相似文献   

8.
为提高基坑变形预测结果的准确性,在传统的单点时间序列预测基础上,引入监测数据的空间特征对预测方法进行改进.基于图卷积神经网络(graph convolutional network, GCN)和门控循环单元(gate recurrent unit, GRU),构建一种能捕获数据时空关联性的变形预测模型GCN-GRU,并将其应用于上海某基坑周边管线沉降的变形预测.结果表明,相比于GRU时间序列预测模型,考虑了空间关联性的GCN-GRU模型在单步预测中的均方根误差(root mean square error, RMSE)和平均绝对百分比误差(mean absolute percentage error, MAPE)分别降低了27.3%和25.0%,多步预测中的RMSE和MAPE降低了37.2%和37.3%,预测结果准确性较高.该方法可为同类基坑工程周边管线沉降变形预测提供参考.  相似文献   

9.
针对PM2.5浓度预测模型效果不稳定、泛化能力差的问题,以循环神经网络和注意力机制为基础,提出了二向注意力循环神经网络(TDA RNN)。首先,TDA-RNN模型通过注意力机制获取输入数据的时序注意力和类别注意力,并将其进行融合;然后通过特征编码器对融合后的数据进行编码,获得中间特征;最后将中间特征与PM2.5浓度的历史信息融合,并通过特征解码器获取预测值。对北京地区的PM2.5浓度进行了预测。结果表明,相比前向型神经网络、长短期记忆神经网络、门控循环单元模型和滑动平均模型,TDA-RNN模型预测精度更高;在抗干扰测试中,当输入数据存在无关因素时,TDA RNN模型的预测精度出现轻微下降,但仍高于其他模型。该二向注意力循环神经网络特征提取能力强,预测精度高,同时可适用于其他场景的多变量时间序列预测。  相似文献   

10.
时间序列数据分析可用于识别长期趋势并进行正确的预测,与人工神经网络(artificial neural network, ANN)相比,门控循环单元(gated recurrent unit, GRU)可以处理时间序列信号,在自然语言处理、语音识别、机器翻译等方面有着广泛的应用。然而,由于参数和模型的复杂性,GRU模型在硬件实现中遇到了瓶颈。文章构建一个基于忆阻器的GRU硬件电路,具有完整的GRU功能,而且输入/输出参数更少。仿真结果表明,电路的平均误差为0.007 5,能够有效地实现GRU网络的功能。将设计的GRU电路应用在搭建的序列预测模型中,可以预测股票价格变化趋势,且其预测的R2分数达到0.923 4。因此基于忆阻器的GRU硬件电路的设计在机器学习和人工智能方面具有一定的应用潜力。  相似文献   

11.
针对火电机组锅炉燃烧过程中预测 NOx 排放过程存在的非线性和时序性特点,提出一种基于核主成分分析 (KPCA)和注意力机制(AM)的门控循环神经网络(GRU)氮氧化物预测模型。 首先选用 KPCA 对模型的输入变量 进行降维,消除冗余变量;其次,将筛选的变量数据作为 GRU 的输入,并采用网格搜索优化 GRU 的超参数;最后, 引入 AM 计算权值,实现区分输入特征功能,提高 NOx 预测模型精度。 通过某 330 MW 电站锅炉实际数据对 AGRU 预测模型仿真验证,并将 AGRU 模型、GRU 模型和 BP 神经网络模型的预测结果进行对比。 结果表明:基于 AGRU 的 NOx 预测模型的均方根误差和平均绝对误差较 BP 神经网络和 GRU 模型均有减少,可精准预测非线性时序燃 烧过程的 NO x 排放。  相似文献   

12.
目前,学术界主流的中文分词法是基于字符序列标注的传统机器学习方法,该方法存在需要人工定义特征、特征稀疏等问题.随着深度学习的研究和应用的兴起,研究者提出了将长短时记忆(long short-term memory,LSTM)神经网络应用于中文分词任务的方法,该方法可以自动学习特征,并有效建模长距离依赖信息,但是该模型较为复杂,存在模型训练和预测时间长的缺陷.针对该问题,提出了基于门循环单元(gated recurrent unit,GRU)神经网络的中文分词法,该方法继承了LSTM模型可自动学习特征、能有效建立长距离依赖信息的优点,具有与基于LSTM神经网络中文分词法相当的性能,并在速度上有显著提升.  相似文献   

13.
为解决目前常用的人工智能注水预测无法考虑数据在时间上的相关性问题,通过选取一种基于循环神经网络(RNN:Recurrent Neural Network)改进的长短期记忆(LSTM:Long Short-Term Memory Neural Network)神经网络构建油田注水预测模型.该模型不仅能考虑到注水量和影响因...  相似文献   

14.
为丰富地铁内部换乘客流预测理论,更好地制定地铁运营计划,提出了一种基于时间序列分解方法(STL)与门控循环单元(GRU)的地铁换乘客流预测模型。该模型将预测过程分为3个阶段,第1阶段为原始地铁刷卡数据预处理,采用基于图的深度优先搜索算法识别乘客的出行路径,构建换乘客流时间序列;第2阶段运用STL时间序列分解算法将换乘客流时间序列转化为趋势量、周期量以及余量,并利用3σ原则对余量进行异常值的剔除与填充;第3阶段基于深度学习库Keras,完成GRU模型的搭建、训练及预测。以北京地铁西直门站的换乘客流数据为研究对象,对模型的有效性进行了验证,结果表明:与长短时记忆神经网络(LSTM)、门控循环单元、STL时间序列分解方法与长短时记忆神经网络组合模型(STL-LSTM)相比,STL-GRU组合预测模型可提升工作日(不含周五)、周五、休息日的换乘客流预测精度,预测结果的平均绝对百分比误差至少分别降低了2.3、1.36、6.42个百分点。  相似文献   

15.
城市道路交通环境复杂多变,城市道路行程时间具有较强的非线性与非稳定性,为提高城市道路行程时间的预测精度,提出了基于变分模态分解(variational mode decomposition,VMD)与门控循环单元(gated recurrent unit,GRU)相结合的组合预测模型。与传统分解算法相比,VMD拥有非递归求解和自主选择模态个数的优点。首先利用变分模态分解算法将原始行程时间序列分解为若干时间子序列,降低原始序列的非平稳性;然后对每个时间子序列建立GRU预测模型;最后将各个预测结果进行融合,得到行程时间序列预测的最终结果。实验结果表明,变分模态分解与门控循环单元结合的组合模型预测结果要比对照组的单一模型预测结果精准度高,均方根误差(root mean squared Error,RMSE)及下降约3.99~4.37,平均绝对误差(mean absolute error,MAE)下降约3.02~3.35;在组合预测模型中,门控循环单元(GRU)预测效果要比长短期记忆(long short-term memory,LSTM)预测效果表现更佳,均方根误差(root mean squared error,RMSE)下降0.34,平均绝对误差(mean absolute error,MAE)下降0.22。  相似文献   

16.
双向LSTM神经网络的航空发动机故障预测   总被引:2,自引:0,他引:2       下载免费PDF全文
准确的航空发动机故障预测能够为维修决策提供依据,提高装备完好率,避免灾难性故障并最小化经济损失。根据航空发动机传感器数据特点,提出一种基于双向长短期记忆(LSTM)神经网络的故障预测方法,建立故障预测模型,包括数据预处理、网络模型设计、训练与测试,得到在多种工作条件和故障下具有较强泛化能力的神经网络预测模型。使用C-MAPSS数据集对模型进行仿真验证,所提出的双向LSTM故障预测模型通过与RNN、GRU、LSTM时间序列模型对比,误差下降33.58%,得到更高的预测精度,非对称评分下降71.22%,具有更好的适应性。  相似文献   

17.
为提高用户公交出行积极性、方便管理部门合理调度公交班次,利用大数据分析公交浮动车辆历史GPS数据,考虑不同线路、公交站点地理位置、不同驾驶员、气象情况、时间分布等多因素的影响,建立了一种基于门控循环单元(gated recurrent unit, GRU)神经网络的公交到站时间预测模型。该模型结合5 000多万条原始数据,借助分布式Hadoop集群中的Spark弹性分布式数据集进行数据清理,并运用站点匹配算法进行源数据匹配、Lasso算法优化特征选项及去除干扰。实验仿真结果表明:改进的GRU模型R-square拟合度达到94.547%,并且算法效率较传统长短期记忆(long short-term memory,LSTM)神经网络提高了近14%,为进一步提高公交到站时间的预测精度与效率提供了参考。  相似文献   

18.
准确预测锂电池组的荷电状态(state of charge,SOC)能够有效防止电池过度充电或者放电,是储能设备安全运行的重要保障。为了解决SOC无法通过测量直接获得的问题,提出了一种基于猎人猎物优化算法(hunter prey optimization,HPO)优化门控循环单元(gated recurrent unit,GRU)神经网络的预测模型。在GRU的基础上添加Dropout机制,来增强模型的泛化能力,并通过HPO算法优化GRU的超参数,使锂电池的数据特征与网络拓扑相匹配。为了验证HPO-GRU模型的有效性,以某储能公司现场采集的储能锂电池组历史数据进行仿真实验,并与反向传播神经网络(back propagation,BP)、长短期记忆网络(long short term memory,LSTM)和GRU三种预测模型的预测结果进行对比分析。可得HPO-GRU模型预测值与真实值的误差最小,在5%以内。可见HPO-GRU模型的预测精度最高,具有良好的鲁棒性以及较强的泛化能力。  相似文献   

19.
为了提高推荐算法的推荐性能,在序列建模过程中,针对循环神经网络(recurrent neural network,RNN)无法并行运算导致建模速度与准确度较低,以及在偏好预测过程中对用户不同阶段偏好没有动态融合的问题,提出了一种基于混合神经网络的序列推荐算法.在算法模型的用户交互序列建模阶段,考虑到用户近期偏好变化频繁,对于时间效率与推荐准确度都有更高的要求,引入时间卷积网络(temporal convolutional network,TCN)对近期交互序列进行建模,解决了循环神经网络建模速度和准确度较低的问题;在用户偏好预测阶段,在考虑用户近期与长期偏好的基础上,基于注意力机制动态融合了用户近期与长期2个交互阶段的偏好,从而提高了推荐的性能.在公共数据集MovieLens10M与LastFM上进行了实验,结果证明了模型的有效性.  相似文献   

20.
为对交通流进行多步预测,支持智能交通系统的长期决策任务,一种基于编码器-解码器(encoder-decoder,ED)的卷积神经网络(convolutional neural networks,CNN)-门循环单元(gate recurrent unit, GRU)模型,简称ED CNN-GRU。首先使用CNN作为编码器,对交通流序列进行信息捕捉,再将上述信息通过GRU解码器进行解释并输出。实验证明,对比CNN、GRU单个模型,ED框架有效解决了误差的迅速累积问题。对比其他基准模型,CNN、 GRU模型对于交通流序列的特征提取及解释能力较为优秀。对于未来12个步长的交通流量预测任务,对比其他基准模型,单因素输入情况的ED CNN-GRU模型的均方根误差下降约0.344~6.464,平均绝对误差下降约0.192~0.425。对比单因素输入,多因素输入下ED CNN-GRU模型拥有更好的预测能力。证明了ED CNN-GRU模型在不同输入维度的多步交通流预测中任务中均具有良好的预测能力,为数据获取条件不同的城市提供了一个支持单因素及多因素输入情况的多步交通流预测模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号