首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
偏振及双折射效应对全光纤退偏陀螺性能的影响   总被引:1,自引:1,他引:0  
通过对退偏陀螺的分析,指出偏振及双折射误差对其性能的影响不同于保偏光纤陀螺.为定量分析偏振过程、双折射误差,考虑到部分偏振光的实际存在,运用弥勒矩阵描述光路进程.在偏振误差的解析后,提出了限制退偏器的角度误差及采用高消光比的偏振器等措施来改善退偏陀螺性能,获得了0.1°/h精度全光纤退偏陀螺的设计方案.  相似文献   

2.
建立了布里渊光纤陀螺环形腔中泵浦光及布里渊激光的偏振传输模型,推导出了2本征态的本征值,分析了环境因素波动引起的偏振误差.研究结果表明:采用保偏光纤构建光纤环形腔并旋转熔接点偏振主轴90°能使泵浦光及布里渊激光2本征偏振态在激光器中保持稳定的谐振间距,从而消除偏振串扰给陀螺带来的误差;采用单偏振单模光纤构建布里渊光纤陀螺环形腔能消除偏振串扰.针对2种消除偏振串扰的方法进行了实验,实验结果与理论分析相符.  相似文献   

3.
分析了退偏陀螺干涉的实现过程,对干涉型全光纤退偏陀螺退偏过程、偏振控制、双折射现象进行数学描述,完成了全光纤退偏陀螺模型的设计,得出了退偏陀螺元件的弥勒矩阵.使用偏振光学矩阵分析理论,进一步对退偏理论、退偏器的设计、退偏技术的实现、退偏器的精度对退偏陀螺性能的影响等进行理论推导和实验分析.  相似文献   

4.
通过对退偏陀螺的分析,指出偏振及双折射误差对其性能的影响不同于保偏光纤陀螺.为定量分析偏振过程、双折射误差,考虑到部分偏振光的实际存在,运用弥勒矩阵描述光路进程.在偏振误差的解析后,提出了限制退偏器的角度误差及采用高消光比的偏振器等措施来改善退偏陀螺性能,获得了0.1°/h精度全光纤退偏陀螺的设计方案  相似文献   

5.
根据耦合模理论推导出适用于纤芯为任意截面形状、两根保偏光纤的偏振轴非平行保偏光纤耦合器的耦合系数计算公式,形式简单、应用方便。  相似文献   

6.
谐振式光纤陀螺由于其在小型化、集成化和高精度等方面比干涉型光纤陀螺占有优势,引起了国内外研究机构的广泛关注,而光纤环形谐振腔作为光纤陀螺的核心敏感部件对陀螺信号的输出至关重要。本文分析对比了半长1.10 m,定长2.2 m,保偏耦合器偏振消光比为20 dB,分光比为50∶50的光纤环腔在相同室温条件下,不同匝数谐振谱线的谐振深度ρ、半高全宽(FWHM)以及光纤陀螺的输出信号包括动态范围、频率带宽、标度因数、系统极限灵敏度的各项陀螺关键指标,为定长保偏光纤环腔作为光学陀螺的核心部件提供相关指导。  相似文献   

7.
提出了一种通过偏振模式耦合方式实现分布反馈光纤激光器保偏输出的方法,分布反馈光纤激光器是由刻写在有源光纤上的相移光栅构成的一种窄线宽光源。由于侧面紫外曝光过程造成的光纤极化,这种光纤光栅激光具有线偏振特性,但光路结构一般是由单模光纤构成,因此激光的线偏振特性无法保持。通过监测激光偏振耦合输出功率,可以间接识别激光线偏振方向,将激光线偏振方向和保偏尾纤二次耦合熔接,可以实现窄线宽分布反馈光纤激光的保偏输出。实验得到了偏振消光比大于30 dB,输出稳定线偏振光的分布反馈光纤激光器,且激光效率、线宽、噪声等较原始单模输出时均未发生明显变化。  相似文献   

8.
为了分析偏振耦合误差对光纤陀螺(FOG)干涉输出的影响,根据实际的光纤陀螺的光路物理模型和琼斯矩阵理论,建立了分立光学器件及光纤焊接点传输模型,并最终推导出完整的光路系统传输模型。结果表明:光纤熔接角、偏振耦合点位置和多功能集成相位调制器的消光比都会产生偏振耦合误差;在偏振耦合误差变化以及存在相位噪声的情况下,将导致干涉输出产生噪声波动。该成果对光纤陀螺光路设计和误差抑制具有一定的参考价值和指导意义。  相似文献   

9.
研究了光纤布拉格光栅传感器的波长解调原理和保偏光纤环镜的结构及传光原理,分析了输入光波长和输出光功率的分配特性,提出了一种基于保偏光纤环镜的光纤布拉格光栅传感解调方案,应用Matlab7.0进行仿真分析,验证了理论的正确性,运用Optisystem7.0进行光路测试及参数测定充分验证了解调方案的可行性.最后给出了该解调模型中保偏光纤长度、耦合器耦合系数及两偏振态相位差等参数的最优设置范围.  相似文献   

10.
保偏光纤是制造光纤陀螺的核心材料,随着近些年的发展,光纤陀螺向着高精度和小型化发展,这就要求保偏光纤也要向细径光纤方向发展。125,μm保偏光纤研制阶段注重的是光纤损耗等光学参数,80,μm保偏光纤的研制更加注重光纤的结构参数。拍长是反映细径保偏光纤性能的一项重要参数,改进细径保偏光纤的拍长首先要从增加光纤芯区的应力双折射着手,其中减小r/a值是一种重要的手段。通过实验得到优化的过程参数,提高了细径保偏光纤的成品率,最终改进了细径保偏光纤的拍长,达到了客户实用化的要求。  相似文献   

11.
本文对高圆双折射光纤的偏振特性作了分析,提出了一个能确定高圆双折射光纤保偏性能的特性参数.文中还给出了对线偏振光输入、出射光消光比满足一定设计值下高圆双折射光纤固有线双折射及弯曲半径与光纤扭转率之间的关系曲线.这些结果为这类光纤的设计及性能判定提供了理论依据.  相似文献   

12.
本文用数值计算的方法解非线性耦合薛定谔方程,研究了在非偏振保持光纤中随机双折射变化对孤子自俘获传输现象的影响。研究结果表明,相对于具有保偏特性的强双折射光纤,非偏振保持光纤中随机双折射所致的2个模式间频繁的能量交换,减缓了2脉冲的走离,有利于束缚态的形成,入射偏振角θ对孤子的自俘获传输影响非常小,这就使光孤子耦合进光纤时不须鉴别光纤的快、慢轴。  相似文献   

13.
介绍了用MCVD工艺熊猫型保偏光纤用高掺硼应力预制棒的制作工艺过程。通过分析高应力预制棒制作的技术难点,实施工艺改进制作出熊猫型保偏光纤用高掺硼应力预制棒,所制作的应力预制棒用于制备高双折射的熊猫型保偏光纤。由于应力预制棒的折射率和应力区直径都显著提高,且芯部的三氧化二硼掺杂浓度也显著提高,有效防止了组装和加工过程中应力棒的炸裂问题,同时大幅提高了保偏光纤的偏振特性,偏振串音从之前的-23 dB/km提高到最低-28 dB/km。  相似文献   

14.
本文提出一种用于光谱测量的保偏光纤干涉结构.该结构基于保偏光纤、法拉第旋转镜、偏振分束器和保偏光环形器等光纤器件的.结构中采用的压电陶瓷光纤相位调制器,使干涉工作在光程线性调制区域,以减小压电陶瓷非线性光程调制产生的误差.结构中的法拉第旋转镜、保偏光纤及保偏光器件的结合使用保证了传输光的偏振稳定性,消除偏振衰落效应的影响,保证了稳定的光谱测量结果.实验测试了SLD光谱,测得结果和光谱仪测得结果一致,结果表明该系统测量光谱的稳定性.该系统可用于提供光纤传感器和通信应用中常用光源(如二极管激光器、LED和半导体激光器等)的光谱分析.  相似文献   

15.
普通单模光纤中存在的偏振效应会对布里渊光时域分析传感器性能产生较大影响。理论分析并实验研究了扰偏器对布里渊光时域分析传感器性能的影响。结果表明,采用扰偏器时光纤末端处的检测信号增益的均方根误差相对于不采用扰偏器时降低约4.26dB,有效地抑制了检测信号的偏振起伏,降低了系统偏振噪声;信号增益提高约1.14dB,降低了信号的偏振相关衰落;布里渊频移的均方根误差降至1.6MHz,提高了布里渊频移的测量准确度。  相似文献   

16.
光纤偏振态检测方法的研究   总被引:1,自引:0,他引:1  
在光纤干涉仪和偏振模色散检测过程中,偏振态的检测是十分重要的.本文给出了两种用1/4波片和检偏器检测光纤输出光偏振态的方法和原理,并进行了实验验证.  相似文献   

17.
提出了以高扭转率旋转应力型双折射光纤来实现手征光纤光栅,并进而实现易于在线制成的全光纤圆起偏器.采用耦合模理论分析表明,以小于1mm的扭转周期旋转领结光纤或熊猫光纤可以实现圆起偏器.与已有的基于特殊光纤的手征光纤光栅不同,旋转光纤基于商用应力高双折射光纤,容易与普通光纤连接.耦合模分析还揭示了这类由旋转光纤形成的手征光纤光栅中圆偏振模相耦合的偏振选择机理和实现起偏器的必要条件.数值分析表明,对数值孔径为0.1865、拍长为1.25mm的熊猫光纤以右手螺旋方向进行旋转,当旋转周期和光纤长度分别为0.375mm和33.2mm时,该起偏器在谐振波长1550nm处输出左旋圆偏振光.  相似文献   

18.
采用全矢量有限元分析方法研究了应力区大小、应力区与纤芯之间距离、纤芯区域热膨胀系数等参数对铒镱共掺保偏光纤双折射与应力分布的影响,通过改进超声波打孔、硼棒磨抛与抽真空封装等预制棒加工技术,较大程度上提高了铒镱共掺保偏光纤预制棒的加工工艺水平,最终将光纤的偏振串音控制在-23,d B/10,m以下,双折射提高至3.9×10~(-4)以上,为制备性能更加优化的高双折射、低偏振串音铒镱共掺保偏光纤奠定了理论与工艺基础。  相似文献   

19.
单模光纤的偏振特性分析   总被引:1,自引:0,他引:1  
本文分析了性能不完善的单模光纤产生偏振特性的机理,并解释了偏振特性引起的几种物理现象,论证了性能完善的单模光纤不存在偏振特性。  相似文献   

20.
从偏振相关增益的机理——偏振选择饱和出发,通过对反转粒子数分布进行傅立叶展开,推导了常双折射系数掺铒光纤放大器中与偏振有关的增益(PDG),并计算了不同偏振态光场的增益.分析了PDG 对光纤激光器的影响及在设计过程中的应用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号