首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
任龙芳  汤正  胡艳  强涛涛 《精细化工》2023,40(2):263-271
为提高聚氨酯泡沫(PUF)的疏水性能,首先,采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后,采用预聚体法制备了PUF负载H-PSP复合材料[H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体(PPU)质量的百分数]。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(标记为H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷进行油水分离实验,结果表明,H-PSP-PUF-10对石油醚、煤油、二甲苯、环己烷的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   

2.
为提高聚氨酯泡沫(PUF)的疏水性能,首先采用十六烷基三甲氧基硅烷(HDTMS)对花生壳粉末(PSP)进行改性,得到疏水改性花生壳粉末(H-PSP)。水接触角测试结果表明,改性后H-PSP的水接触角由PSP的0°提高至145.2°。然后采用预聚体法制备了PUF负载H-PSP复合材料(H-PSP-PUF-n,n为H-PSP占聚氨酯预聚体PPU的质量分数)。对H-PSP-PUF-n的结构和性能进行了表征与测试。结果表明,H-PSP的负载提高了泡沫材料的表面粗糙度和力学性能,H-PSP的最佳负载量为PPU质量的10%(H-PSP-PUF-10)。与PUF相比,H-PSP-PUF-10的静态水接触角达到142.4°,较PUF提高了50.4°。对二氯甲烷、石油醚、煤油、二甲苯、环己烷五种油品进行油水分离实验,结果表明,H-PSP-PUF-10对不同油品的吸油倍率在7~9 g/g,而且具有良好的油水选择性。经15次吸附-脱附循环后,H-PSP-PUF-10对各油品的吸油倍率在6.5~8.0 g/g,具有良好的循环利用性。  相似文献   

3.
A series of chitosan (Ch)–graphite oxide (GO)‐modified polyurethane foam (PUF) materials as adsorbents were synthesized by a foaming technique. The adsorbent was characterized through IR spectroscopy, scanning electron microscopy, and thermogravimetric analysis (TGA). Batch adsorption experiments of the cationic dye crystal violet (CV) were carried out as a function of the Ch–GO content (1.0–8.0 wt %), solution pH (2–10), dye concentration (100–300 mg/L), adsorbent dosage (10–60 mg/mL), and temperature (20–45°C). At a lower pH value, the surface of Ch–GO/PUF acquired positive charge by absorbing H+ ions; this resulted in a decreasing adsorption of the cationic CV dye because of electrostatic repulsion. As the pH of the aqueous system increased, the numbers of negatively charged sites increased by absorbing OH ions, and a significantly high electrostatic attraction existed between the negatively charged surface of Ch–GO/PUF and the cationic dye (CV) molecules. This led to maximum dye adsorption. The kinetics, thermodynamics, and equilibrium of CV adsorption onto Ch–GO/PUF were investigated. The equilibrium data for CV adsorption fit the Langmuir equation, with a maximum adsorption capacity of 64.935 mg/g. The adsorption kinetics process followed the pseudo‐second‐order kinetics model. Thermodynamic parameters analysis revealed that the adsorption of CV from an aqueous solution by a Ch–GO modified PUF material was a spontaneous and endothermic process. We concluded that Ch–GO/PUF is a promising adsorbent for the removal of CV from aqueous solutions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41828.  相似文献   

4.
Development of industrialization has brought convenience to people's lives; however, it has also brought serious harm to the environment, where, water pollution is the most obvious. Here, a polybutylene adipate terephthalate (PBAT) open-cell foam doped with iron-pillared bentonite (IPB) is prepared by using sugar as a pore-forming agent and solution phase separation, and then combined with a solution dipping method to coat the foam surface with a polyacrylamide/SiO2, which makes the PBAT foam superhydrophilic. The static adsorption effect of superhydrophilic IPB-doped PBAT open-cell foam on methylene blue (MB) and Cu2+ is studied. The adsorption isotherm fitting shows that the adsorption conforms to the Langmuir model and it has biased toward monolayer adsorption. The adsorption kinetics fitting confirms that the adsorption process is in line with the pseudo-second-order adsorption model, which is dominated by chemical adsorption. The modified PBAT open-cell foam has an adsorption effect on Cu2+; however, it has weak cyclic adsorption capacity. It shows a good cyclic adsorption ability for the cationic dye MB and it has >95% photodegradation efficiency of the MB after five time's cyclic adsorption. The superhydrophilicity makes the foam to have better applications in oil–water separation.  相似文献   

5.
With the ever frequent of industrial organic solvent emissions and oil spillages, the development of high efficiency oil/water separation materials has attracted extensive attention. Here, PLA-based nanofiber membranes modified with metal oxides (SiO2, TiO2, Al2O3, and CeO2) are fabricated through blow spinning the mixed solution of polylactic acid (PLA) and metal oxide nanoparticles (NPs). Results shows that the addition of SiO2 NPs significantly increases the hydrophobicity of the membranes, while maintaining the excellent superoleophilicity. The PLA/SiO2 nanofiber membranes demonstrate a higher separation performance than pure PLA, PLA/TiO2, PLA/Al2O3, and PLA/CeO2 nanofiber membranes with high separation efficiency (~100%) and permeation flux (17,800 L m−2 h−1 for n-heptane), as well as prominent oil adsorption capacity (19.9 g/g for n-hexane). The successful fabrication of metal oxides modified PLA nanofiber membranes with high separation and adsorption ability, and excellent durability hold great application potential in the field of oily wastewater treatment.  相似文献   

6.
Poor flame retardancy of polyurethane foam (PUF) limits its practical application in many fields. Here, flame‐retardant performance of PUF is improved by a simple dip‐coating method. Halloysite nanotube (HNT) coating can be uniformly bonded to PUF surfaces via hydrogen‐bonding interactions, which is confirmed by element mapping and X‐ray photoelectron spectra. Density and mechanical properties of PUF increase with the concentration of HNT suspension, while porosity of the foam decreases with HNT loading. Weight ratio of HNTs to PUF in the composite can be achieved as high as 65.2%. Surfaces of PUF transfer from hydrophobic to super‐hydrophilic after HNT coating, and the water contact angle decreases from 116° to 0° after HNT coating. As a result, methylene blue adsorption capacity of HNTs‐coated PUF increases from 0.02 to 0.15 mg g?1, and adsorption efficiency can reach 98% after 10 s. HNT coating can prevent PUF from burning and dripping, which suggests that flame‐retardant performance of PUF is significantly improved by HNTs. This work establishes a general procedure for improving flame retardancy and dye absorbency of polymer materials by simple dip‐coating of environmental‐friendly clay nanotubes, which shows great potential in high‐performance polymer and functional composite materials.  相似文献   

7.
ABSTRACT

To improve the separation efficiency of oil-in-water emulsion of produced water from ASP (Alkaline/Surfactant/Polymer) flooding, a modified silica gel-supported polyether polyquaternium (PPA@SiO2) was developed as a demulsifier for separating oil-in-water emulsion. The performance of oil removal using PPA@SiO2 is achieved under combined demulsification and adsorption, the polyether polyquaternium (PPA) was functionalized by displacement and charge neutralization as demulsifier, the modified silica gel (MPS-SiO2) was functionalized by adsorbing oil droplets as adsorbent. PPA@SiO2 was synthesized and characterized using FTIR, XPS, SEM, and N2 sorption analysis. PPA@SiO2 was applied for the treatment of oil-in-water emulsion of produced water from ASP flooding. A 92.31% of oil removal is obtained under conditions as following: a 500 mg/L of initial oil concentration, a 1.5 g of PPA@SiO2, a 30°C of demulsifying temperature and a 60 min of demulsifying time. MPS-SiO2 particles after demulsifying exhibited a high adsorption capacity of 303.6 mg/g. This work not only provides a promising demulsification to demulsify the oil-in-water emulsion of produced water from ASP flooding but also gives a demulsify method combined demulsify and adsorb.  相似文献   

8.
以聚醚多元醇PPO330和甲苯二异氰酸酯为原料,采用一步法发泡工艺,制备了两种催化剂用量不同的聚氨酯软质泡沫(PUF),研究了它们的孔结构和排油性能。结果表明,PUF的泡孔结构较为规整且泡壁表面光滑均匀。其中PUF–1的孔径较大且开孔率较高,两种PUF的孔隙率都在97%以上;PUF–1,PUF–2对喷气燃料和军用柴油的吸油倍率均随着时间的增大而增大,最后达到最大吸油倍率(Q_(max));对喷气燃料的Q_(max)分别为29.48 g/g和23.76 g/g,对军用柴油的Q_(max)分别为32.62 g/g和25.24 g/g;PUF对军用柴油的离心排油率均达到25%左右,但PUF–2对喷气燃料的离心排油率达35.39%以上;PUF对喷气燃料和军用柴油的排油速率均随压强增大逐渐增大,油残存率则逐渐降低。当压强增大到6.23 k Pa时,PUF对两种油品的排油速率达到最大,油残存率均保持在40%以下。  相似文献   

9.
Mesocellular silica foam (MSU-F) supports were functionalized via wet impregnation with various amine and alcohol compounds for use as high-capacity adsorbents for CO2 separation. The effect of the amino, hydroxyl, and ether functional groups in the impregnating mixture on the CO2 adsorption capacity was investigated. Chemical adsorption was controlled by the composition of the compounds, and the blending effect on the adsorption performance was dependent on the temperature. MSU-F (30 wt.%) impregnated with a mixture of tetraethylenepentamine (40 wt.%) and aminoethylethanolamine (30 wt.%) showed a high adsorption capacity of 5.4 mmol/g at 333 K for 15 kPa CO2.  相似文献   

10.
A silica immobilized imidazolium-type acidic ionic liquid catalyst was shown to be a better catalyst than n-propylsulfonic acid silica (PrSO3H-SiO2) and sulfonic acid silica (SO3H-SiO2) for the hydrolysis of untreated Sigmacell Cellulose (DP ~ 450) in water. For example, new catalyst produced the highest TRS yield of 48.1% after 3 h at 190 °C, whereas cellulose samples heated with PrSO3H-SiO2 and SO3H-SiO2 catalysts produced only 19.9% and 13.2% TRS yields, respectively, under identical conditions. The new catalyst could be recycled up to four cycles with a small loss in catalytic activity.  相似文献   

11.
A highly efficient and stable solid adsorbent invoking a direct incorporation of tetraethylenepentamine (TEPA) onto the as-synthesized mesocelullar silica foam (MSF) has been developed for CO2 capture. Unlike most amine-functionalized silicas, which typically exhibit CO2 adsorption capacities less than 2.0 mmol/g, such organic template occluded mesoporous silica-amine composites exhibited remarkably high CO2 uptake as high as 4.5 mmol/g at 348 K and 1 atm. Moreover, notable increases in CO2 adsorption capacities of the composite materials were observed when in the presence of humidity. Durability test performed by cyclic adsorption–desorption revealed that such adsorbents also possess excellent stability, even though a slight decrease in adsorption capacity over time was observed.  相似文献   

12.
Magnetic and superhydrophobic materials with robust physical/chemical stability for controllable and remote magnetic driven capacity for oil removal under harsh environments are meaningful for oil–water separation but still a challenge. Herein, an alternative strategy to address this challenge is demonstrated by decorating poly(styrene‐co‐divinylbenzene) (PSDVB) on Fe foam via one‐pot solvothermal method. Different from previous magnetic and superhydrophobic materials, Fe foam is chosen to replace Fe3O4 nanomaterials. Thus, complicated preparation procedures and the high cost for Fe3O4 nanomaterials can be avoided. Additionally, PSDVB coating provides the whole foam with robust physical/chemical stabilities: i) the surface wettability can be maintained after 50 abrasion cycles or exposed in humid air (relative humidity: 90%) for 14 days, and ii) the surface wettability does not change under different pH solutions (3 < pH < 12) or highly salty solution (NaCl 10 wt%) for 6 h. Besides, outstanding separation efficiency (>99.9%), high durability (>70 times), and excellent oil flux (16 963–75 156 L m?2 h?1) can be realized under gravity. Most importantly, the foam continuously removes oil from confine place (on water surface or under water) under magnetic driven force.  相似文献   

13.
Use of polyester‐type polyurethane foam (PUF) is an effective adsorbent for the removal of hazardous dye: crystal violet (CV) from an aqueous solution. In this adsorption study, the formation of hydrophobic ion pair (opposite charge attraction) between the charged species, i.e., cationic (basic) dye CV and anionic surfactant sodium dodecylsulfate (SDS) sorbed onto PUF. Chemical calculations were performed using quantum simulation to understand ion‐pair formation for CV–SDS at the semiempirical PM6 level. Adsorption studies were performed using 200 mg cylindrical PUF with an overhead stirrer in solutions containing varying compositions of the dye–surfactant mixture. The equilibrium thermodynamics and kinetics of the adsorption process were studies by measuring CV dye removal as a function of time and temperature. Results show that the formation of the dye–surfactant ion pair is necessary for effective adsorption onto PUF. Various adsorption isotherms, viz., Langmuir, Freundlich, Temkin, Dubinin–Radushkevich (DRK), Harkin‐Jura, and several kinetic models, viz., pseudo‐first order, pseudo‐second order, Elovich, and Intraparticle diffusion were used to fit the spectrophotometric result. The equilibrium adsorption data fit to the Langmuir isotherm gives the maximum adsorption of PUF as 33.39 mg g?1 from 200 mL 5.0 × 10?5 mol L?1 CV solution at 298.15 K. The kinetics study showed that the overall adsorption process follows pseudo‐second‐order kinetics. The Morris–Weber model suggests that an intraparticle diffusion process is active in controlling the adsorption rate. The Freundlich, Temkin, DRK adsorption isotherms showed that solute dye transfers from solution to the PUF adsorbent surface through physical adsorption. The Langmuir and Harkin‐Jura adsorption isotherms suggest that the adsorbent surface is homogeneous in nature. The thermodynamic data showed that the adsorption process is spontaneous and endothermic with a positive enthalpy change and a negative change in Gibb's energy.  相似文献   

14.
In this study, silica xerogels with high silanol content were synthesized by using sodium silicate as low-cost silica source in the presence of hydrochloric acid and acetic acid via sol–gel process for CO2 adsorption purpose. The effect of amount of acetic acid on the surface and structural properties of silica xerogel was investigated. Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA) revealed that the silanol groups existed on the surface of silica xerogel products and their concentration increased with increasing the amount of acetic acid. The BET surface area and total pore volume of the silica xerogel prepared using 6 mL of acetic acid (MMS-6) were found to be 1021 m2/g and 0.72 cm3/g, respectively. The pore structure of silica xerogel products consisted of the interparticle voids between the nanoparticles aggregates, and the interconnected wormhole microporous structure. The latter pore structure was more uniform on increasing the amount of acetic acid. CO2 adsorption/desorption measurements were carried out using TGA unit with high purity CO2 (99.999%). The highest CO2 sorption capacity (83.6 mgCO2/gsorbent) was obtained with MMS-6 product. Thermal swing adsorption studies showed that the silica xerogel products exhibited strongly reversible CO2 adsorption capacity and stable during 5-repeated cycle of adsorption/desorption experiment at 35 °C.  相似文献   

15.
We have prepared a series of poly(lactic acid)/hydroxyapatite (PLA/HAp) composite foams by a supercritical CO2 foaming process and investigated the lead ion (Pb2+) removal performances of the foam samples in batch aqueous solutions (foam sample of 5 g, aqueous solution of 500 ml, initial Pb2+ ion concentration of 275 mg/l, pH values of 2.0–6.0) at 25°C. It is characterized that the porosity of the foams decreases from 96.3% to 50.3% as the HAp content increases from 0 to 40 wt%, although all the foam samples exhibit well‐developed open porous structures. The maximum capacity of Pb2+ ions removed by the composite foams increases from 81.2 to 140.5 mg/g with increasing the HAp content from 10 to 40 wt%, due to the increased adsorption sites of HAp for Pb2+ ions. However, the removal kinetic analysis based on the pseudo‐second order model demonstrates that the Pb2+ ion removal rate is slightly faster for the composite foams with higher porosity (i.e., lower HAp content). The maximum Pb2+ ion removal capacity of a given composite foam increases from 20.2 to 140.5 mg/g with increasing the initial pH value from 2.0 to 5.0 but it decreases slightly to 111.7 mg/g at the initial pH value of 6.0. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

16.
Cellulose foam, renowned for its lightweight properties and exceptional adsorption capacity, has emerged as a significant material of interest. In our study, a distinct functionalized cellulose foam adsorbent was developed using N,N-methylenebisacrylamide (MBA) as a cross-linker. This foam was further chemically tailored with 3-aminopropyltriethoxysilane (APTES) and tannic acid (TA) to optimize its affinity for Cu (II). Utilizing a green and efficient procedure at ambient temperature, MBA was directly crosslinked with MCC sol, the resultant foam features a distinguished three-dimensional, multi-walled porous configuration, marked by a strikingly low average density of 0.0306 g/cm3 and an impressive average porosity surpassing 97%. Subsequently, more amino and oxygen-containing groups were introduced by simple impregnation. The rich functional groups and unique structure enabled the adsorption of Cu (II) up to 93 mg/g, demonstrating an increasing trend in line with rising Cu (II) concentrations. Furthermore, this composite cellulose foam displayed commendable hydrophobic characteristics, evident from a hydrophobic angle surpassing 120°. From both environmental and economic perspectives, this chemically-modified cellulose material epitomizes an ideal adsorbent, showcasing unparalleled adsorption capacity coupled with robust chemical and structural integrity. As such, it presents a viable option for the efficient sequestration of Cu (II) in wastewater treatments.  相似文献   

17.
This letter reports on the hydrophobicity and oleophilicity of open‐cell foams from polymer blends prepared by supercritical CO2. A typical bulk density of the foam is measured to be 0.05 g/cm3. The contact angle of the foam with water is determined to be 139.2°. The foam can selectively absorb the diesel from water with the uptake capacity of 17.0 g/g. The foams are technologically promising for application of oil spill cleanup. © 2016 American Institute of Chemical Engineers AIChE J, 62: 4182–4185, 2016  相似文献   

18.
The authors studied the CO2 adsorption performances of borane modified graphene-based materials (B-rG-O). B-rG-O powder was fabricated by reacting graphene oxide with a borane–THF adduct and showed good CO2 adsorption capacity (1.82 mmol/g at 1 atm) and recyclability as determined using a CO2 isotherm and breakthrough experiments respectively. The roles of boron moieties for CO2 adsorption were studied using theoretical calculation and spectroscopic experiments.  相似文献   

19.
We studied the simultaneous removal of Pb(II) and chemical oxygen demand (COD) from synthetic solutions using immobilized microorganism. The immobilized microorganisms on polyurethane foam (IPUF) were successfully prepared by cultivating the microbe B350 in a mixture of culture medium and polyurethane foam (PUF). The adsorption of Pb(II) ion from aqueous solutions onto PUF and IPUF was studied by batch adsorption. IPUF exhibited high Pb(II) removal efficiency. When 0.12 g of IPUF was used to treat 50mL of 20mg/L P(II) solution at pH 7.0 and 25 °C for 120 mins, the removal ratio was 80%. The biosorption kinetics could be described by the pseudo-secondorder model, and the adsorption isotherms could be described by Langmuir and Freundlich equations. In addition, for synthetic wastewater containing Pb(II) and C6H12O6, the removal ratios of Pb(II) and COD after being treated by IPUF for 8 hours were 92.0% and 84.2%, respectively. The removal ratio of COD clearly decreased with the increase of Pb(II) concentration, meaning that Pb(II) was toxic to the mobilized microorganisms and lower Pb(II) concentration was preferred.  相似文献   

20.
《分离科学与技术》2012,47(13):3128-3149
Abstract

This work reports a study about the adsorption of Rhodamine B (RB) by unloaded polyether type polyurethane foam (PUF) in a medium containing sodium dodecylsulfate (SDS). The adsorption process was based on the formation of an ionic-pair between RB and SDS, which presented high affinity by PUF. Adsorption was characterized in relation to equilibrium, kinetic, and thermodynamic aspects and the results obtained showed that the ratio between the SDS and RB concentrations played an important role on the adsorption efficiency. A maximum adsorption capacity of 6.85 × 10?6 mol RB g?1 was observed at established experimental conditions. The adsorption process was spontaneous (negative ΔG) and presented an endothermic characteristic (positive ΔH). Also, its rate was regulated by an intraparticle diffusion process. Sequential extraction experiments were carried out by changing PUF plugs in 30 and 60 min time intervals, resulting in removal rates higher than 95%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号