首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
出租车目的地预测可以掌握出租车的流动方向,便于出租车调度。已有的预测方法多仅利用轨迹序列的原始特征作为预测模型的输入,忽略了原始特征背后的时空数据,造成轨迹时空信息缺失。针对以上问题,提出出租车目的地预测的深度学习方法DLDP。首先采用滑动窗口,基于速度、转角利用统计量计算得到轨迹的高层特征。其次,自动编码器将高层特征转换为固定长度的潜在空间表示,得到轨迹的深度特征。最后,将深度特征和原始特征相结合,一同作为LSTM的输入进行预测。实验表明,DLDP比传统RNN预测模型的准确率提高了9%,平均距离误差减少了1 km。  相似文献   

2.
移动轨迹目的地预测是基于位置服务的重要一环,现有的预测方法存在历史轨迹不能完全覆盖所有可能的查询轨迹(数据稀疏)问题,没有考虑前缀轨迹点对预测结果的影响差异(长期依赖问题)。为了解决上述问题,提出了轨迹分布式表示方法。首先,将轨迹进行网格划分,把表示位置的高维独热码向量进行降维处理,生成包含地理拓扑关系的低维嵌入向量。其次,对目的地进行聚类,把聚类中心作为簇中轨迹的标签,缩小相似轨迹的差异,放大不相似轨迹的特征,有效克服了数据稀疏问题。在目的地预测中,将自注意力机制引入长短期记忆网络,提出了基于长短期记忆网络的目的地预测模型SATN-LSTM,挖掘序列中的关键点并根据其重要程度分配权重,较好地解决了长期依赖问题。最后,在真实轨迹数据集上进行了多次实验,验证了模型的有效性,并与现有的模型进行对比,验证了本模型具有更好的准确性。  相似文献   

3.
提出了一种基于循环神经网络的空载电动出租车的充电桩推荐方法(CPRM-IET,charging pile recommendation method for idle electric taxis),来为空载状态下的电动出租车推荐最佳充电桩。空载状态下的电动出租车移动一般依赖于驾驶人的潜意识移动倾向和驾驶习惯,因此需要根据其历史移动轨迹来预测其未来移动,从而找到充电额外移动最小的若干充电桩。在CPRM-IET中,使用了一种基于双阶段注意力机制的循环神经网络(DA-RNN,dual-stage attention-based recurrent neural network)模型来预测电动出租车的未来轨迹,DA-RNN模型包括输入注意力机制和时间注意力机制。输入注意力机制在每个时刻为输入的行驶记录分配权重,而时间注意机制为编码器的隐藏状态分配权重。根据预测轨迹,再选择额外移动最小的若干充电桩,并推荐给电动出租车驾驶人。仿真结果表明,CPRM-IET可以在额外移动和均方根误差方面取得较好的结果,反映了CPRM-IET可以准确地预测空载电动出租车的未来轨迹,并向这些电动出租车推荐合适的充电桩。  相似文献   

4.
行人间交互作用的复杂性给行人轨迹预测带来了挑战,且现有算法难以捕获行人间有意义的交互信息,不能直观地建模行人间的交互作用。针对以上问题,提出多头软注意力图卷积网络。首先利用多头软注意力(MS ATT)结合内卷网络Involution分别从空间图和时间图输入中提取稀疏空间和稀疏时间邻接矩阵,生成稀疏空间和稀疏时间有向图;然后,利用图卷积网络(GCN)从稀疏空间和稀疏时间有向图中学习交互作用与运动趋势特征;最后,将学习到的轨迹特征输入时间卷积网络(TCN)以预测双高斯分布参数,生成行人预测轨迹。在ETH和UCY数据集上的实验结果表明:相较于空时社交关系池化行人轨迹预测模型(SOPM),所提算法的平均位移误差(ADE)降低了2.78%;相较于稀疏图卷积网络(SGCN),所提算法的最终位移误差(FDE)降低了16.92%。  相似文献   

5.
6.
高速公路车辆车速、车距、行驶方向等因素都是动态变化的,受外界环境干扰,采集到的目标车辆状态特征数据可能存在噪声,导致车辆变道轨迹预测存在误差,为此提出基于长短期记忆网络的高速公路车辆变道轨迹预测模型,有效预测高速公路车辆变道轨迹,改善车辆行驶条件,保障其安全运行。通过激光雷达、GPS等装置采集目标车辆交通数据,将其合理组合成目标车辆状态观测特征向量,并构建相应的特征向量矩阵,将所构建目标车辆状态观测特征向量矩阵作为1层卷积神经网路输入,提取目标车辆状态观测特征向量潜在特征后,以1层卷积神经网络输出结果为双向长短期记忆网络有效输入,经过无数次模型训练后,输出目标车辆变道轨迹预测结果。实验结果表明:该模型可有效预测高速公路车辆变道轨迹,预测出的轨迹横纵坐标误差极低,能够得到较为理想的高速公路车辆变道轨迹预测结果。  相似文献   

7.
评分数据稀疏是影响评分预测的主要因素之一。为了解决数据稀疏问题,一些推荐模型利用辅助信息改善评分预测的准确率。然而大多数推荐模型缺乏对辅助信息的深入理解,因此还有很大的提升空间。鉴于卷积神经网络在特征提取方面和注意力机制在特征选择方面的突出表现,该文提出一种融合卷积注意力神经网络(Attention Convolutional Neural Network, ACNN)的概率矩阵分解模型: 基于卷积注意力的矩阵分解(Attention Convolutional Model based Matrix Factorization, ACMF),该模型首先使用词嵌入将高维、稀疏的词向量压缩成低维、稠密的特征向量;接着,通过局部注意力层和卷积层学习评论文档的特征;然后,利用用户和物品的潜在模型生成评分预测矩阵;最后计算评分矩阵的均方根误差。在ML-100k、ML-1m、ML-10m、Amazon数据集上的实验结果表明,与当前取得最好预测准确率的PHD模型相比,ACMF模型在预测准确率上分别提高了3.57%、1.25%、0.37%和0.16%。  相似文献   

8.
传统的滚动轴承寿命预测方法缺乏明确的学习机制,无法有效识别不同时序特征之间的差异并突出重要特征,影响其预测精度.为克服上述缺点,本文提出了一种基于卷积注意力长短时记忆网络(CAN-LSTM)的剩余使用寿命预测模型.该模型主要由两部分组成:前端为卷积注意力网络(CAN),学习通道和时间维度中的深层故障特征,提高特征的表征能力;后端为改进LSTM网络,基于退化特征对轴承进行寿命预测.归一化健康指标至[0,1]区间内,得到相同的失效阈值;使用五点平滑法对预测结果进行处理,实现预测结果的输出;利用留一法对轴承全寿命试验数据进行验证,测试模型的准确性和适应性.试验结果表明:所提模型的平均均方根误差和平均绝对值误差比仅用CNN模型预测值低54.12%和59.05%,比仅用LSTM模型预测值低39.06%和43.42%,比卷积长短时记忆网络(CNN-LSTM)低20.41%和25.86%.  相似文献   

9.
针对现有船舶轨迹预测模型预测准确度低的问题,提出一种基于注意力机制的时域卷积网络和双向长短时记忆网络(TCN-ABiLSTM)的船舶轨迹预测模型。首先搭建TCN网络提取船舶轨迹的序列特征,之后将注意力机制引入网络调整不同属性特征的权值,凸出对轨迹预测影响更大的特征,最后搭建Bi-LSTM网络学习轨迹序列的前后状况来提取序列中更多的信息,实现对船舶未来轨迹的预测;通过实际船舶AIS数据对网络进行训练与测试实验,实验结果表明,TCN-ABiLSTM模型相比LSTM、Bi-LSTM、TCN、BiLSTM-Attention、TCN-Attention模型船舶轨迹预测精度更高,拟合程度更好,验证了所设计的TCN-ABiLSTM模型在船舶轨迹预测方面的的有效性和实用性。  相似文献   

10.
对周围环境中运动物体未来状态的准确预测是影响自动驾驶车辆做出准确决策的重要影响因素,车辆是最常见也是最需要关注的运动物体之一。针对结构化道路下周围车辆轨迹预测的多模态输入问题,提出了基于注意力机制的深度预测网络。提出交互模块以提取目标车辆与周围车辆及车道线信息存在的交互特征;结合车道线信息对车辆运动的指引作用,加入目标点预测模块以预测目标车辆可能到达的目标点,增加预测准确性。在Argoverse公开数据集上进行实验,所提轨迹预测网络在3秒预测时长实现了1.45m最小平均距离误差及3.21m最小最终距离误差的预测精度,优于当前主流的预测算法。  相似文献   

11.
针对现有交通流预测模型未能充分利用交通流数据的时空特征以实现准确预测的问题,提出一种结合注意力机制的卷积门控循环单元预测模型(ACGRU)。该模型利用卷积神经网络(CNN)和门控循环单元(GRU)提取交通流的时空特征,然后使用注意力机制生成含有注意力概率分布的交通流特征表示,同时利用交通流的周相似性提取周期特征,将所有特征相互融合进行回归预测。在真实交通流数据集上的实验表明,提出的ACGRU模型具有更高的预测精度,预测误差相比其他预测模型平均降低了9%。  相似文献   

12.
针对多步交通流量预测任务中时间空间特征提取效果不佳和预测未来时间交通流量精度低的问题,提出一种基于长短时记忆(LSTM)网络、卷积残差网络和注意力机制的融合模型。首先,利用一种基于编解码器的架构,通过在编解码器中加入LSTM网络来挖掘不同尺度的时间域特征;其次,构建基于注意力机制挤压激励(SE)模块的卷积残差网络嵌入到LSTM网络结构中,从而挖掘交通流量数据中的空间域特征;最后,将编码器中获得的隐状态下的信息输入到解码器中,实现高精度多步交通流量的预测。基于真实交通数据进行实验测试和分析,实验结果表明,相较于原始的基于图卷积的模型,所提模型在北京和纽约两个交通流量公开数据集上的均方根误差(RMSE)分别获得了1.622和0.08的下降。所提模型能够高效且精确地对交通流量作出预测。  相似文献   

13.
针对传统的短期电力负荷预测模型存在的预测精度不高和滞后性的问题,本文提出一种基于卷积神经网络、长短时记忆网络和注意力机制下的混合神经网络模型来进行预测。利用卷积层对多维的电力数据影响特征进行提取,过滤筛选其非重要影响因子,完成电力数据相关特征的映射变换,再通过长短时记忆网络层的循环,对时序性电力数据特征选择性提取,最后利用注意力机制添加重要特征的权重,经Adam算法优化后输出电力负荷预测的结果。依靠GPU强大的算力支撑来解决预测数据时的实时性问题,凭借多融合神经网络的手段来提高其预测精度。经由算例验证,所提出模型真实可靠,预测质量显著优于其他传统模型。  相似文献   

14.
为了提高对混沌时间序列预测的精准度,提出了一种基于模糊信息粒化和注意力机制的混合神经网络预测模型。首先对数据进行归一化处理,利用模糊信息粒化对数据的复杂度进行简化;然后将经过相空间重构后的样本输入卷积神经网络(CNN)提取空间特征;再利用长短期记忆神经网络(LSTM)进一步提取时间特征;最后将融合特征传递给注意力机制提取关键特征,得出预测结果。选取Logistic、洛伦兹和太阳黑子混沌时间序列进行实验,并与CNN-LSTM-Att模型、CNN-LSTM模型、FIG-CNN模型、FIG-LSTM模型、CNN模型、LSTM模型、支持向量机(SVM)及误差逆传播(BP)模型进行对比分析。结果表明,所提的预测模型预测精度更高,误差更小。  相似文献   

15.
基于聚类的出租车异常轨迹检测   总被引:1,自引:0,他引:1  
《计算机工程》2017,(2):16-20
出租车全球定位系统数据中蕴含城市交通和移动对象行为的宏观信息,从中可以挖掘出有价值的异常轨迹模式。将位置和几何形状、行驶时间分别作为出租车轨迹的空间与时间特征,根据特征偏离情况划分时间、空间和时空异常轨迹。从轨迹数据中提取相同起终点的轨迹集,将轨迹划分成轨迹片段,计算轨迹间的相似度并进行基于距离和密度的聚类,在空间特征上初步分离出频繁和稀疏轨迹,根据数据异常判定的kσ准则确定时间特征异常的分离阈值,对时间特征进行再次划分,最终实现出租车异常轨迹检测。实验结果表明,该方法能从异常轨迹中挖掘出个性化路线、异常停留位置和交通路段,为智能交通、物流高效规划和执行等提供参考信息。  相似文献   

16.
针对出租车空载率高、司机寻客难的问题,提出泊松-卡尔曼组合预测模型(PKCPM)。首先,采用加权非齐次泊松模型,针对出租车历史数据进行建模,得到目标时刻的估计值;其次,基于当天的实时数据,将临近时刻乘客需求的平均值作为目标时刻预测值;最后,将预测值和估计值作为卡尔曼滤波模型的输入参数,实现对目标时刻出租车乘客需求的预测,同时引入误差反向传播机制,减小下一次预测误差。基于郑州市出租车轨迹数据集,对组合模型与非齐次泊松模型(NHPM)、加权非齐次泊松模型(WNHPM)、支持向量机(SVM)等三种模型进行对比,实验结果显示PKCPM的误差比WNHPM、SVM分别降低了8.85个百分点、14.9个百分点。该模型能对不同时段内、不同空间网格的乘客需求进行预测,为出租车寻找乘客提供可靠的依据。  相似文献   

17.
加油站是重要的能源供给单位,对加油站站点的下一时段客流量进行精准预测,可为相关资源的调度与分配提供决策支撑。针对加油站级客流量预测问题,结合加油站客流数据的时空特征,提出一种基于注意力机制的时空网络模型。以路网结构建模的站级客流数据为输入,结合卷积神经网络、长短期记忆网络与注意力机制,解决站点间的空间依赖、短期与长期时序依赖以及长期时序依赖中的时间漂移问题,精准预测下一时段的站级客流量。在真实数据集上的实验结果表明,与历史平均模型、长短期记忆网络模型和双向长短期记忆网络模型等基线模型相比,该模型在均方误差(RMSE)、平均绝对误差与平均绝对百分比误差上均有所提升,其中RMSE提升22.89%。  相似文献   

18.
烧结终点位置的实时准确预测对于优化烧结工艺具有重要的意义.针对烧结过程中强非线性和动态时变性造成烧结终点高精度预测难的问题,本文提出了一种基于工况知识引导注意力时间卷积网络(AM–TCN)模型.首先,构建堆叠的时间卷积模块用于充分提取烧结过程数据中深层次的非线性特征;其次,将历史工况知识引入注意力机制,引导模型在保留过程数据时序特征的同时区分不同特征的重要性;最后,构建预测模型用于烧结终点位置在线预测.工业数据实验表明,所提AM–TCN模型具有较好的烧结终点预测精度,对提升烧结过程热状态稳定性具有重要意义.  相似文献   

19.
海面温度(SST)与全球气候变化、海洋灾害、海洋生态系统密切相关,因此准确地预测 SST 是一个重要课题。现有区域型 SST 预测方法将 SST 时间序列处理为二维矩阵序列并作为模型输入,每个矩阵对应着特定时刻的区域 SST,通过提取时空特征来实现其预测,但未充分考虑不同时空特征在时间维度和空间维度上对 SST 影响的不均衡性,限制了预测精度地提高。为了解决该问题,提出了一种结合时间注意力机制和空间注意力机制的区域 SST 预测方法(CRA-ConvLSTM),使得模型动态关注不同时刻的时间特征和区域内不同点的空间特征,赋予不同的影响权重,进而提高 SST 预测精度。具体来说,首先将输入的区域 SST 时间序列通过卷积神经网络(CNN)编码为多层特征向量,提取局部特征;然后构建了残差时间注意力模块,自适应地学习不同时刻的注意力权重,提取时间维度上的关键特征,并设计了残差空间注意力模块,提取区域内不同点在空间维度上的关键特征,此外,将注意力机制结合残差结构避免了网络中信息量过少导致的性能下降问题;最后通过卷积长短时记忆神经网络(ConvLSTM)将特征向量映射为 SST 预测结果。实验结果显示,该模型的均方根误差(RMSE)和预测精度(PACC)分别达到了 0.19 和 99.43%,均优于其他方法,有效提高了 SST 的预测精度。  相似文献   

20.
针对发动机轴承损坏情况严重以及基于模型方法预测精度不稳定的问题,提出一种基于深度胶囊网络和粒子群优化算法的轴承故障预测方法。通过将观测振动信号自适应降噪后,基于粒子群优化算法进行稀疏盲分离,得到轴承振动信号,通过S变换获取时域图以及轴承振动特征,其次将时域图经由卷积层卷积,输入到胶囊层进行预测。将高低胶囊层之间的算法转化为数学优化问题,提升传输效率,最后得出高层胶囊的预测向量。结合具体轴承监测数据进行实例分析,与基于数据的浅卷积网络以及经验模态分解预测相比,算法体现了更稳定更精确的预测性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号