首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
溶液pH控制合成Ni(OH)_2花状微球   总被引:1,自引:0,他引:1  
以氢氟酸为溶液中镍离子配位剂,然后加入氨水,调节溶液pH值的同时,作为镍离子补充配位剂,制备了由纳米片花瓣组成的Ni(OH):花状微球.Ni(OH)2花状微球的晶型和微观结构的调控可以简单通过改变溶液pH值来实现.当溶液在7.5≤pH≤8.8范围时,能够得到大量、均匀的Ni(OH)2花状微球.当溶液在7.5≤pH≤8.0范围时,Ni(OH)2微球为a-Hi(OH)2晶型;当溶液在8.0<pH≤8.8范围时,Ni(OH)2微球为a-Ni(OH)2和β-Ni(OH)2的混合晶型.Ni(OH)2花状微球直径在0.6~1.3μm范围内随溶液pH值的变化而变化.Ni(OH)2花状微球由几十个相互连接的纳米片状花瓣组成.纳米片花瓣厚度约60 nm,长度在80~230 nm之间随溶液pH值的变化而显著变化.  相似文献   

2.
以硫酸亚铁、硝酸钴、硫酸镍、碳酸钠和石墨微球为主要原料,利用非均相沉淀工艺分别制备出水合氧化铁、碱式碳酸钴和碱式碳酸镍包裹石墨微球的前驱体复合微球;然后将前驱体复合微球于600℃热还原处理2 h,分别得到了钴铁、铁镍和钴镍磁性纳米合金颗粒层均匀包裹石墨微球的粉体材料.利用SEM,EDS,XRD对前驱体复合微球和核壳结构石墨/磁性纳米合金复合微球的形貌、成分、物相进行了表征,利用VSM对核壳结构石墨/磁性纳米合金复合微球的磁性能进行了研究.这些核壳结构复合微球的磁性合金颗粒层分别由晶粒为37.9 nm的Co0.5Fe0.5、38.5 nm的Fe0.5Ni0.5和38.2 nm的Co0.5Ni0.5组成,相应的矫顽力分别为36676,20972,16894A/m.  相似文献   

3.
用硅烷偶联剂对由部分还原沉淀法制备的Fe3O4磁微粒子进行了表面修饰.并利用XRD,TEM,AFM,IR,古埃磁天平等手段对其结构与性能进行了表征.分析了偶联剂使用量对磁性纳米复合微球性能的影响.研究结果表明,经硅烷偶联剂修饰后的微球表面可带有-OH,-NH2,-C=O,-C=C等多种有机功能基团,随着硅烷偶联剂用量的增大,微球表面包覆的有机特征基团也增多,偶联反应趋于完全.当硅烷用量较少时,随着用量的增加,磁性能随之提高;而当硅烷用量达到一定值之后,继续增加用量,则会使磁性能降低.磁性纳米复合微球的Zeta电位随着偶联剂用量的增加呈现先增加后降低的变化趋势.  相似文献   

4.
利用透射电镜、X射线光电子能谱、动态激光光散射和荧光光谱技术对Eu(Ⅲ)与聚N-异丙基丙烯酰胺(PNIPAM)接枝核壳纳米微球PNIPAM-g-P(NIPAM-co-St)(PNNS)的相互作用进行了研究.结果表明:Eu(Ⅲ)和热敏性的核壳纳米微球PNNS有显著的相互作用.其一,Eu(Ⅲ)可与PNNS中酰胺基团上的氧原子配位形成微球配合物Eu(Ⅲ)-PNNS;其二,Eu(Ⅲ)-PNNS微球配合物兼具热敏性;其三,该配合物在614 nm处的荧光强度较Eu(Ⅲ)增大了33倍,Eu(Ⅲ)与PNNS之间能量传递达到55%.  相似文献   

5.
采用阳离子聚苯乙烯(PS)微球为模板,以钛酸丁酯为前驱体经溶胶凝胶反应制备了TiO2/PS复合微球,并经高温煅烧得到单分散中空TiO2纳米微球。采用扫描电镜(SEM)、透射电镜(TEM)、红外光谱仪(FT-IR)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-VIS DRS)对复合和中空微球的结构和光催化性能进行了表征。结果表明,经高温煅烧后TiO2中空微球尺寸相对于复合微球收缩了约25%,其粒径约为100 nm;中空微球壳层厚度可随钛酸丁酯用量而变化,壳层呈锐钛矿和金红石混晶结构,同时中空微球表现出比P25纳米TiO2更强的甲基橙光降解特性。  相似文献   

6.
采用阳离子聚苯乙烯(PS)微球为模板,以钛酸丁酯为前驱体经溶胶凝胶反应制备了TiO2/PS复合微球,并经高温煅烧得到单分散中空TiO2纳米微球。采用扫描电镜(SEM)、透射电镜(TEM)、红外光谱仪(FT-IR)、X射线衍射仪(XRD)和紫外-可见分光光度计(UV-VIS DRS)对复合和中空微球的结构和光催化性能进行了表征。结果表明,经高温煅烧后TiO2中空微球尺寸相对于复合微球收缩了约25%,其粒径约为100 nm;中空微球壳层厚度可随钛酸丁酯用量而变化,壳层呈锐钛矿和金红石混晶结构,同时中空微球表现出比P25纳米TiO2更强的甲基橙光降解特性。  相似文献   

7.
表面修饰纳米硼酸钙的制备及摩擦学性能   总被引:1,自引:1,他引:0  
制备了表面修饰油酸的纳米硼酸钙添加剂,利用XRD、TEM和IR对其形貌及结构进行了表征,采用离心分离法考察了纳米硼酸钙在润滑油中的稳定性,在四球摩擦磨损试验机和SRV试验机上考察了油品的抗磨减摩性能,并用X射线光电子能谱(XPS)探讨了其润滑机理.结果表明:纳米硼酸钙添加剂具有良好的分散性、稳定性和抗磨减摩性能;沉积膜和反应膜的生成对抗磨减摩性能有决定作用.  相似文献   

8.
以硫酸亚铁、碳酸氢铵、空心玻璃珠为主要原料,采用非均相沉淀法,通过控制工艺过程参数制各出水合氧化铁均匀包覆空心玻璃珠的复合微球前驱体,然后在(N2/H2)气氛下于720℃保温2 h进行热还原处理,得到了表面光滑、晶粒大小约为50 nm的α-Fe包覆空心玻璃珠复合微球.利用SEM、EDS、XRD对包覆前驱体和热还原产物的表面形貌、成分、物相组成进行表征,利用TG/DSC研究包覆前驱体的热分解过程,用振动样品磁强计(VSM)对纳米α-Fe包覆空心玻璃珠复合微球的磁性能进行测试.得出了制备这种复合微球的优化工艺参数.复合微球的磁性能相比于纯α-Fe微粉,其饱和磁化强度相近,矫顽力增加.  相似文献   

9.
研究Zn2+和HCO3?对纳米磁性铁去除水中砷的影响。结果表明:Zn2+可以显著增强纳米磁性铁对砷的吸附,使As(Ⅴ)去除率由原来的66%提高到99%以上;HCO3?对纳米磁性铁吸附砷具有明显的抑制作用,使As(Ⅴ)去除率降至15%;而Zn2+可以削弱HCO3?对As(Ⅴ)吸附的抑制效应,在较短时间内(2 h)去除90%以上的As(Ⅴ),达到世界卫生组织规定的饮用水砷标准10μg/L。  相似文献   

10.
利用熔体快淬法和品化退火工艺制备了纳米晶复合NdFeB永磁粘结磁体,研究了添加Zr元素对磁体室温磁性能和温度稳定性的影响.结果表明,添加3at%Zr元素能明显提高磁体的矫顽力和最大磁能积.在淬速18 m/s、退火温度640℃下制备的Nd_(9.5_Fe_(76)Co_5Zr_3B_(6.5)粘结磁体具有良好的综合磁性能,即剩磁为0.71 T,矫顽力为652 kA/m,最大磁能积为80kJ/m~3.适量添加Zr元素可以有效改善磁体的温度稳定性,在20~150℃,纳米晶复合Nd_95Fe_(76)Co_5Zr_3B_(6.5)粘结磁体的剩磁温度系数为-0.13%/℃,内禀矫顽力温度系数为-0.35%/℃;在150℃时效100h后,不可逆磁通损失为-4.50%.  相似文献   

11.
利用磁性纳米粒子Fe3O4表面的聚多巴胺 (PDA) 对银离子的吸附作用,采用种子诱导法制备了载银磁性纳米粒子 (PDA-Fe3O4@Ag)。采用UV-Vis (紫外-可见) 光谱对PDA-Fe3O4@Ag纳米粒子的制备过程进行了分析,采用FTIR (红外光谱)、XRD (X射线衍射仪)、TEM (透射电镜) 和VSM (振动样品磁强计) 等手段对所得的PDA-Fe3O4@Ag粒子进行表征;研究了PDA-Fe3O4@Ag对4-硝基苯酚还原反应的催化作用,还测试了其抗菌性能。结果表明,纳米金种子的存在是制备PDA-Fe3O4@Ag纳米粒子的关键;在外加磁场作用下该磁性催化剂可以容易地从反应体系中分离,经多次循环使用后仍具有良好的催化性能;此外PDA-Fe3O4@Ag纳米粒子具有杀菌性能,且经磁分离回收循环利用5次后仍呈现对金黄色葡萄球菌较好的杀菌效果。  相似文献   

12.
通过溶胶-凝胶法制备了TiO2纳米粒子,并用十六烷基三甲基溴化铵(CTAB)/正己醇/水反胶束体系作为微反应器合成了聚吡咯(PPy)/TiO2纳米复合粒子.利用透射电镜(TEM)、扫描电镜(SEM)、红外光谱仪(FTIR)、X-射线衍射仪(XRD)对纳米复合粒子进行了表征.实验结果表明,PPy/TiO2球形粒子的平均粒径为150~200 nm,在复合粒子中球形粒子占据优势,并有团聚的趋势.FTIR和XRD结果显示纳米复合材料由PPy和TiO2组成,无机复合粒子只有部分形成晶体.从该研究结果中可以看出,反胶束法可以有效地应用于有机-无机纳米复合材料的制备.  相似文献   

13.
马正峰  姬忠莹  王晓龙 《表面技术》2018,47(10):283-288
目的 制备光固化水性聚氨酯改性丙烯酸酯/二氧化硅(WPUA/SiO2)复合材料,提高水性光固化聚合物材料的涂膜性能。方法 制备含双键官能化的二氧化硅纳米粒子,将其引入到制备的可光固化聚氨酯改性丙烯酸酯乳液体系中,制备水性UV固化WPUA/SiO2复合乳液,研究复合材料制备方法,分析体系中官能化二氧化硅纳米粒子的分散稳定性及其对涂膜形貌、透光性、硬度等性能的影响。结果 由于WPUA和官能化二氧化硅纳米粒子均含有C==C,所制备的WPUA/SiO2复合材料可以用UV光进行固化,官能化二氧化硅纳米颗粒由于表面存在有机分子链,与水性聚氨酯改性丙烯酸酯相容性提高,使得二氧化硅纳米颗粒掺杂量达到10%(质量分数)时可存储稳定性达30天以上。固化后涂层的透光性和力学性能明显提升,涂层铅笔硬度达到3H,粘附性为1级,抗冲击强度大于50 kg?cm。结论 制备的WPUA/SiO2复合体系具有良好的稳定性,改性纳米粒子的掺杂对水性UV固化聚氨酯改性丙烯酸酯的力学性能有明显改善,且可提高复合涂层的透光性。  相似文献   

14.
采用化学共沉淀法制备Fe_3O_4颗粒,在其制备过程中控制Fe_3O_4核的长大时间,加入油酸钠作为表面修饰剂来控制Fe_3O_4核的尺寸,然后加入正硅酸乙酯(TEOS)生成纳米级Fe_3O_4@SiO_2复合纳米粒子和亚微米级Fe_3O_4@SiO_2复合微球。通过X射线衍射、透射电镜、能谱分析和红外光谱分析证实Fe_3O_4颗粒表面包覆有SiO_2,并研究了复合粒子的形貌和成分组成,然后进行了磁性能分析。结果表明,Fe_3O_4纳米颗粒、Fe_3O_4@SiO_2复合纳米粒子和亚微米级Fe_3O_4@SiO_2复合微球的饱和磁化强度分别为79.95、34.85和61.51 A·m2/kg,对应的剩磁分别为1.73、1.05和3.07 A·m2/kg,矫顽力分别为1083、755和2002 A/m,亚微米级复合微球的剩磁和矫顽力都显著增大。  相似文献   

15.
宋金山  肖承和 《铸造》1991,(2):8-11
研究了锰对奥—贝球铁的组织与性能的影响后发观、锰能提高残余奥氏体的稳定性; 增加等温淬火后残余奥氏体的含量;推迟贝氏体转交第一、二阶段的到来。这些现象当等温温度大于410℃时更明显。当等温温度小于350℃时,锰含量提高,球铁等温淬火后韧性基本不变。对锰含量较高(0.6%)的球铁延长等温时间,其韧性不断提高(笫二阶段到来前)。在较低等温温度(<350℃)或较长等温时间(120~180min)情况下,可将锰含量放宽至0.6%,而奥—贝球铁的韧性基本不变。  相似文献   

16.
在溶液内,利用聚丙烯酰胺为还原剂制备出了聚丙烯酰胺保护下的Au纳米粒子。聚丙烯酰胺起到双重作用,它是制备金纳米粒子的还原剂;另外,它也是一种很好的金纳米粒子的稳定剂。紫外-可见光谱测试证实了溶液内金纳米粒子的存在,透射电镜观察到制得的纳米纤维内含有金纳米粒子。这种新的路线对于制备其他功能性复合纤维有很好的借鉴作用。  相似文献   

17.
目的: 对制备乙酰半胱氨酸纳米微球进行药动学和药效学评价。方法: 尾静脉注射乙酰半胱氨酸纳米微球和乙酰半胱氨酸,不同时间检测血浆和各脏器的乙酰半胱氨酸。通过皮下注射CCl4建立大鼠肝损伤模型,不同剂量乙酰半胱氨酸纳米微球进行治疗,检测血清学指标和肝组织各项指标评价纳米微球治疗慢性肝损伤的疗效。结果: 乙酰半胱氨酸纳米微球改变了药物在体内的分布,肝组织中药物浓度明显提高,半衰期显著增加。药效实验显示,纳米微球能降低血清学指标,提高肝组织抗氧化功能,减轻肝细胞脂肪变性、细胞浸润和坏死。结论: 乙酰半胱氨酸纳米微球具有明显肝靶向性,有利于肝损伤的药物治疗,是一种比较理想的乙酰半胱氨酸新剂型。  相似文献   

18.
在实验室条件下,研究了微量Cr(0.05%~0.15%)对中锰球铁组织和性能的影响.结果表明,中锰球铁加入微量铬,可以使碳化物粒化,碳化物数量增加,马氏体组织和力学性能改善.在生产条件下,利用微Cr中锰球铁生产的JS500-1000强制式混泥土搅拌机衬板,经过3年跟踪考察,使用寿命比中锰球铁提高了30%~40%.  相似文献   

19.
用分散聚合法制备聚甲基丙烯酸甲酯(PMMA)微球,以聚乙烯吡咯烷酮(PVP)为分散剂,依次用葡萄糖和硼氢化钠还原银氨溶液,在微球表面化学镀银,得到表面覆银的PMMA-Ag微球,对其进行了表征和分析。结果表明,微球分散性好,银层光滑致密,粒径较均匀,直径约2μm;XRD图谱显示无银以外的其它物相存在;红外光谱显示银与PMMA微球的表面可能存在相互作用,是银还原沉积的影响因素;热重分析表明,PMMA-Ag耐热性有所提高(26℃);制备使用的硝酸银占PMMA微球质量分数为55%时,样品的导电率最大(330 S/cm)。  相似文献   

20.
树枝状纳米球独特的三维中心辐射状孔道结构使其具有出色的比表面积和孔体积。客体物质可负载于多级孔道内,形成新型的载体/递送/反应平台。本文首次设计构筑了一类具有高稳定性的多功能复合材料—树枝状硅钛杂化纳米球负载金纳米颗粒催化剂。使经过系列化学反应及改性过程,树枝状硅钛杂化纳米球依旧保持中心辐射状纹理结构,孔道内成功负载了锐钛矿二氧化钛和超细金纳米粒子。相较于树枝状二氧化硅纳米球负载金纳米颗粒材料(对比样),设计合成的催化剂展现出更加优越的多功能催化性能。在模拟太阳光下,其光解水产氢量为210.01 μmmol.g-1,约为对比样的10倍。无光条件下,其降解对硝基苯酚的表观动力学常数为2.150×10-3 s-1,约是对比样的19倍(0.111×10-3 s-1)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号