首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
随着燃料电池、燃料电池汽车的快速发展,LiBH4被认为是最具应用前景的储氢材料之一。然而,LiBH4吸放氢温度高以及吸放氢速率相对缓慢限制了其广泛应用。为改善LiBH4吸放氢性能,在LiBH4中添加少量Al,采用基于密度泛函理论的第一原理赝势平面波方法,计算了LiBH4合金化前后体系的氢化物形成热、H原子解离能,体系的晶体与电子结构。氢化物形成热、H原子解离能计算结果发现:Al合金化后体系相结构稳定性变差,体系解氢过程中所吸收的热量减少,H原子解离能减小,体系解氢能力增强。电子态密度(DOS)、电子密度和Mulliken电子占据数的结果表明:LiBH4结构稳定、解氢困难的电子结构原因是B-H之间较强的共价键,Al对LiBH4体系解氢性能增强主要是Al-LiBH4体系Fermi能级附近能隙值发生变化以及Li-BH,B-H间成键作用减弱。理论上揭示Al添加改善LiBH4体系解氢性能的微观机制,为LiBH4实际应用提供理论指导。  相似文献   

2.
高密度储氢是制约氢燃料电池汽车发展的技术瓶颈之一,相较于高压气态和低温液态等储氢方式,固态储氢体积储氢密度高、安全性好,发展前景良好。分析和总结了燃料电池电动汽车的应用对车载固态储氢的技术要求,包括固态储氢材料的储氢密度、吸放氢动力学、热力学、可逆性、循环寿命、成本以及安全性等;介绍了氢化镁、硼氢化物、铝氢化物、氨基化物等高密度储氢材料的储氢原理及其优缺点,综述了纳米化改性、催化剂改性、元素掺杂改性和构筑复合储氢体系等改善高密度固态储氢材料性能方法,重点评述了采用不同改进措施的氢化镁、硼氢化物、铝氢化物、氨基化物的研究进展。通过分析对比不同体系以及不同改进措施下的固态储氢材料及其性能,总结出研发采用轻质多孔框架材料并配合高效轻质催化剂的复合材料,是改善固态储氢性能的有效途径。  相似文献   

3.
Mg基储氢合金储量丰富、价格低、具有较高的储氢容量且环保无污染,是一种很有发展前景的储氢材料。但是该类合金吸放氢动力学性能差、吸放氢温度高,氢化物稳定不易分解,这些缺点使其应用受到一定限制。通过在Mg基储氢合金中进行元素替代或催化掺杂可以达到改善性能的作用。其中,在Mg基储氢合金中掺杂氧化物改善合金储氢性能的研究工作引起广泛关注。本文系统地分析总结了近年来在Mg基储氢合金中掺杂氧化物改善储氢性能的研究成果,对于开发具有商业价值的镁基储氢材料具有一定指导意义。  相似文献   

4.
新能源汽车的迅速发展,促进了对车载储能材料的需求和研究。钛铁基储氢合金具有室温吸放氢,可逆储氢量高,工作温区广,环保无污染,原材料成本低等特点。其不仅可以通过电化学反应实现氢的贮存,还可以直接与气态氢反应形成金属氢化物,是混合动力汽车、纯电动汽车、氢燃料电池以及氢内燃机汽车车载储能系统的重要材料。本文针对现有新能源汽车类型,介绍了主要的车载储能技术,包括:电化学储能(锂离子蓄电池、镍氢蓄电池、铅酸蓄电池)、高压储罐储能、低压储罐储能等。详细介绍了上述储能技术的工作原理,并论述了其在车载储能系统中应用的优势和不足。通过对比现有的车载储能技术,系统分析了钛铁基储氢合金在新能源汽车储能系统中应用的优势和前景,提出了需要重点改善的性能,包括:活化性能,抗毒化性能和电化学容量等,并总结了国内外相关的研究进展。  相似文献   

5.
本文就近年来关于金属间化合物吸放氢热力学研究进展情况作了介绍,有助于人们合成新型储氢或储能材料。  相似文献   

6.
金属钒对镁基合金储氢性能的影响   总被引:1,自引:1,他引:0  
镁及镁基储氢合金具有储氢容量高、成本低及污染小等优点,被认为是用于车载储氢方面较有前途的材料。然而镁基合金存在吸放氢温度较高,吸放氢速度较慢的缺点,抑制了它的实际应用。研究表明,制备多元镁基合金可明显改善合金的储氢性能。采用氢化燃烧合成(Hydriding Combustion Synthesis-HCS)和机械球磨(Mechanical Milling-MM),即HCS+MM技术复合制备Mg90Ni10-xVx(x=0,2,4,6,8)合金。采用X射线衍射仪、扫描电镜及气体反应控制器研究了HCS+MM产物的相组成、表面形貌以及吸放氢性能。XRD分析表明,不同合金均含有MgH2,Mg2NiH4,Mg2NiH0.3,Mg以及VHy相,随着V含量的增加,VHy的相含量逐渐增加,而Mg2Ni氢化物含量逐渐减少。SEM结果表明,Mg90Ni4V6和Mg90Ni2V8合金的颗粒平均尺寸较小且分布比较均匀。Mg-Ni-V合金的吸氢性能优于二元Mg-Ni合金,Mg90Ni4V6的吸氢性能最好,在373 K,合金的吸氢量达到5.25%,且在50 s内就基本达到饱和吸氢量。V可以细化晶粒,使合金内部晶界增多,有利于氢的扩散;并且当合金中的V与Mg2Ni达到一定比例时,对合金的吸氢具有协同催化作用,改善了合金的吸氢性能。Mg-Ni-V合金的放氢性能不如二元Mg-Ni合金,说明在放氢过程中Mg2Ni的催化作用优于V。  相似文献   

7.
钛基储氢合金储氢性能较好、成本低、储氢系统设计简单,因而备受关注。以提高合金氢化物热力学稳定性和储氢容量为出发点,简述了Ti-Fe、Ti-Cr、Ti-Mn、Ti-Zr、Ti-V系钛基储氢合金的研究进展,重点阐述了元素的置换或添加、制备工艺及热处理等对钛基合金储氢性能的影响,同时简述了提升钛基储氢合金活化性能的方法与措施,并对钛基储氢合金的发展前景进行了展望。  相似文献   

8.
用镁与炭化无烟煤混合后进行充氢球磨的方法,制备镁碳储氢材料。运用扫描电镜和透射电镜对储氢材料的粒径、微观形貌及晶形结构进行了表征,运用热重分析仪和差示扫描量热仪对材料的吸放氢性能进行了测试。实验发现,在镁中添加碳进行充氢球磨时,可以在5h内使粒径达到50-100nm。随着碳添加量的增大,镁碳储氢材料的储氢量下降,放氢温度升高。材料Mg3.0C2.0(碳添加量40%)的储氢量2.61%,放氢温度295℃。活性金属Mo对镁碳材料吸放氢性能有着明显的改善作用。  相似文献   

9.
苏华钦 《江苏冶金》1991,19(3):55-64
五贮氢金属功能材料贮氢金属功能材料是指能在冷却或加压时吸氢生成氢化物,反之则放氢的金属材料。它能贮存的氢量,可与材料同体积的液氢相当。这种材料是氢能体系中举足轻重的金属材料。图19所示为氢能体系,该体系利用  相似文献   

10.
稀土-镁-镍系储氢电极材料的研究进展   总被引:2,自引:2,他引:0  
闫慧忠  孔繁清  韩莉  熊玮  孙晓华 《稀土》2005,26(1):60-66
介绍了国内外对各种多元及多相稀土-镁-镍系储氢电极材料的研究进展,主要包括材料的组成、制备方法、组织结构以及吸放氢动力学行为和电化学性能方面的研究。  相似文献   

11.
为了研究急冷对储氢合金残余氢量的影响,利用真空电弧熔炼炉和铜模喷铸制备了Ti_(0.32)Cr_(0.345)V_(0.25)Fe_(0.03)Mn_(0.055)合金,采用XRD、PCT(压力-容量-温度)、TG/DTA等手段分析了急冷对储氢合金吸放氢性能的影响。结果表明,铸态合金和急冷合金均由BCC固溶体主相和Laves第二相组成;急冷对首次吸氢动力学行为影响较大,由铸态时的化学反应控制变为急冷时的新相晶核形成长大控制;急冷后,合金吸放氢平台压得到提高,且吸氢起始点左移,但吸放氢滞后性增大。TG/DTA曲线表明,急冷并没有改变合金的残余氢量,但氢化物放氢温度升高。  相似文献   

12.
为提高镁基储氢合金的体积储氢密度和增加材料导热性能,需要对合金粉末进行压片处理。制备了不同成型压力下直径为10 mm的片状Mg87Ni10La3和Mg87Ni10Ce3合金,研究成型压力对合金体积储氢密度、膨胀特性和吸放氢反应动力学性能的影响。结果表明,在760~1900 MPa下,合金片的表观密度达到粉末的两倍左右;考虑吸放氢循环过程中的体积膨胀,第4次吸氢过程中两种合金的储氢体积密度仍然高于70 g·L-1,1520 MPa的成型压力下Mg87Ni10Ce3合金片具有最大体积储氢密度为86.3 g·L-1。两种合金在4次循环吸放氢后的轴向和径向膨胀为10%左右,体积膨胀约为35%,合金颗粒的粉化是造成膨胀的主要原因。与粉末状材料相比,合金片的首次活化比较困难,吸放氢动力学性能有部分下降;随着吸放氢循环次数的增加,压片成型对合金吸放氢动力学的影响...  相似文献   

13.
一种氢燃料电池汽车用新型储氢材料--NaAlH4的研究进展   总被引:2,自引:0,他引:2  
铝氢化钠(NaAlH4)在加入掺杂剂时能在低于100℃下可逆吸/放大量氢气(目前氢的质量分数可达4.5%),且价廉易得,非常适用于作车用氢燃料电池上的储氢材料.本文介绍了NaAlH4储氢的基本原理、国外NaAlH4储氢的研究进展.并根据目前的研究现状提出了为提高可逆储氢质量分数,加快吸/放氢速率所需进一步开展的工作.  相似文献   

14.
TiFe基合金吸氢量大、放氢压力适中、成本低廉,可应用于太阳能、风电储能系统中,是一种非常具有应用潜力的室温储氢材料。但其活化性能很差,需在670 K、高氢压下活化后才能吸氢。针对如何改善TiFe合金的活化性能,国内外研究者进行了大量的研究工作。本文综述了TiFe合金的国内外研究进展,介绍了TiFe合金的相结构、氢化物相结构,TiFe储氢合金的风电储能应用研究进展;从活化特点、表面偏析、活化条件等方面对TiFe合金储氢活化的机制进行了系统归纳;从过量添加合适的Ti、过渡金属元素和稀土元素的替代或添加、制备工艺及表面改性等方面,总结了改善其活化性能的方法以及活化性能改善的机制。通过降低合金表面的致密性以促进氢原子快速进入合金表面、增加相界面或引入晶体缺陷以提高氢原子的扩散能力等,多方面策略联用来改善合金的活化性能,是未来TiFe室温储氢合金实际应用的重点研究方向。  相似文献   

15.
金属Ce替代LaNi4.5Al0.5合金中的La用以提高金属吸/放氢热力学性能。通过研究合金La1-xCexNi4.5Al0.5(x=0~0.4)的相结构、储氢热力学以及吸/放氢动力学发现,所制备的合金主相为六方晶系LaNi5相;随着Ce替代量的增加(x=0~0.4),合金晶体结构中a轴呈现减小的趋势、c轴及各向异性(c/a)呈现出先增大后减小再增大的趋势;储氢性能测试表明,随着Ce替代量的增加,合金的吸/放氢平台压升高,最大储氢量减小;合金吸/放氢反应热优化程度与各向异性(c/a)呈现出相同趋势,当x=0.2时,合金吸放氢反应焓变分别降低至26.33 kJ/mol和24.30 kJ/mol。  相似文献   

16.
在VTi Ni钒基储氢电池中添加不同含量的石墨烯,测试和分析了显微组织、物相组成、吸放氢性能和耐腐蚀性能。结果表明:石墨烯的添加,明显提高了钒基储氢电池的吸放氢性能和耐腐蚀性能。随石墨烯含量的增加,钒基储氢电池的的腐蚀电位先正移后负移,最大吸氢量先增大后减小,吸氢量达到饱和的吸氢时间先减小后增大,放氢平台压力先基本不变后提高。石墨烯含量优选为1%,腐蚀电位较未添加石墨烯时正移了414 m V,最大吸氢量较未添加石墨烯时提高了24%,吸氢量达到饱和的吸氢时间较未添加石墨烯时缩短了44%。  相似文献   

17.
以新型钒基储氢合金为试验对象,对不同Al含量添加对新型钒基储氢电池合金显微组织、吸放氢性能和充放电性能进行了测试、分析和比较。结果表明,随Al含量的添加,新型钒基储氢合金的晶粒先细化后变大,最大吸氢量先增大后减小,充放电性能先减小后增大,显微组织逐渐改善,吸放氢性能和充放电性能先提升后下降。与0.1%Al含量相比,0.3%Al含量时的平均晶粒尺寸减小了15μm,最大吸氢量增大了91.67%,放电容量衰减率减小了25%。新型钒基储氢合金的Al含量优选为:0.3%。  相似文献   

18.
催化剂掺杂被认为是一种非常有效改善MgH2储氢性能的途径。研究结果表明,过渡金属对氢原子具有很强的亲和力,在氢分子的解离或者氢原子的重组过程中,过渡金属的d电子和氢原子/氢分子轨道上的电子发生转移填充,由此产生的相互作用力促进氢分子的解离和氢原子的重组;掺杂过渡金属氧化物同样可以有效地催化MgH2的吸放氢反应,而且在研磨过程中还可以作为润滑剂和分散剂,防止MgH2颗粒的团聚,细化MgH2颗粒尺寸,加速MgH2的氢解吸动力学,催化MgH2的吸放氢反应;过渡金属卤化物在吸放氢过程与MgH2反应生成的过渡金属氢化物能够促进氢分子的解离和氢原子的扩散、在氢化过程中促进形核、减小吸放氢反应的活化能;金属硫化物或金属氢化物与MgH2在球磨过程中的反应产物具有较高的催化活性,能在一定程度上解决脱氢/氢化动力学缓慢的问题,并且MgS能够提供丰富的成核活性位点。碳基材料的添加,能促进Mg/MgH2相形核,细化...  相似文献   

19.
<正>镍氢电池与锂离子电池相比,具有高安全性、高性价比、大倍率放电等特点,是混合动力汽车首选电池。二次镍氢电池的发展在很大程度上依赖于其负极材料贮氢合金的发展。稀土镁基La-Mg-Ni系合金因具有高容量和良好活化性能,成为镍氢电池负极材料的研究热点之一。随着节能环保的要求越来越高,高性能稀土镁基La-Mg-Ni系合金储氢材料的研发日益受到重视。虽然La-Mg-Ni合金在室温下具有良好的吸氢性能,但由于其氢化物稳定性强而放氢性能较差,经过改  相似文献   

20.
用真空电弧熔炼制备AB2型Sc0.8Zr0.1Y0.1Mn2-xNix(x=0~2.0)储氢合金,利用X射线衍射(XRD)和扫描电镜/能谱分析(SEM/EDS)研究了吸氢前后Ni元素替代Mn对Sc Mn2基合金微观结构的影响,用Sievert装置和热重-差热分析仪(TG/DSC)测试了合金的压力-组成-温度(P-C-T)曲线和吸放氢动力学。研究结果表明,合金铸态组织主要由Laves主相和少量Sc Ni及富Y的第二相组成,其中稀土Sc和Y元素易与Ni形成相应的金属间化合物相。随Ni含量x的增加,合金基体的Laves相组织结构由C14型向C15型转变,x=0时,合金组织基本为C14型Laves相单相组织,x=2.0时,合金组织则完全转变为C15型Laves相单相组织。Ni元素替代Mn对合金的气态吸放氢动力学行为和吸氢P-CT曲线影响较大。随Ni含量的增加,合金吸氢动力学与活化性能逐渐变慢,但其放氢温度明显降低,氢化物生成焓减小(-35.05~-18.72k J·mol-1),储氢平台压升高,储氢容量降低;室温时合金最大储氢量达2.18%(质量分数),储氢后其晶格膨胀率ΔV/V为10.63%~27.32%,吸氢前后合金主相仍保持C14型或C15型相结构,并未发生新的氢致相变,亦无氢致非晶化现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号