首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat transfer enhancement in a 3-D microchannel heat sink (MCHS) using nanofluids is investigated by a numerical study. The addition of nanoparticles to the coolant fluid changes its thermophysical properties in ways that are closely related to the type of nanoparticle, base fluid, particle volume fraction, particle size, and pumping power. The calculations in this work suggest that the best heat transfer enhancement can be obtained by using a system with an Al2O3–water nanofluid-cooled MCHS. Moreover, using base fluids with lower dynamic viscosity (such as water) and substrate materials with high thermal conductivity enhance the thermal performance of the MCHS. The results also show that as the particle volume fraction of the nanofluid increases, the thermal resistance first decreases and then increases. The lowest thermal resistance can be obtained by properly adjusting the volume fraction and pumping power under given geometric conditions. For a moderate range of particle sizes, the MCHS yields better performance when nanofluids with smaller nanoparticles are used. Furthermore, the overall thermal resistance of the MCHS is reduced significantly by increasing the pumping power. The heat transfer performance of Al2O3–water and diamond–water nanofluids was 21.6% better than that of pure water. The results reported here may facilitate improvements in the thermal performance of MCHSs.  相似文献   

2.
Improving the working fluid transport properties is a way to enhance the thermal performance of heat transfer equipment. In this research work, a two-dimensional numerical simulation is used to investigate the thermal performance of a nanofluid-filled cylindrical heat pipe. The considered nanofluid is pure water as the base fluid with dispersed Al2O3 nanoparticles. Effects of particle volume fractions, particle diameters, various heat inputs, and wick structures on thermal performance of the heat pipe are investigated and the results are compared with that of the pure water. A comparison is made for the first time between the results of a simulation by considering fluid flow in the liquid-wick region and treating this region as pure conduction. The results show the heat pipe thermal performance enhancement and a decrease in thermal resistance for about 31% when 5% particle volume fraction with a particle diameter of 10 nm is used. Also, an insignificant effect of heat input on thermal resistance and variation of pressure distribution in the presence of nanoparticles are observed.  相似文献   

3.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

4.
Stable surfactant-free Al2O3/deionized (DI) water nanofluids are prepared by a two-step process and are stabilized using an ultrasonic homogenizer. The thermal conductivity enhancement measured by a transient hot wire technique demonstrated a nonlinear relationship with increase in volume fraction of dispersed nanoparticles and attains a maximum enhancement of 15% for 1 vol% of Al2O3 loading in deionized water at 70°C. The stabilized Al2O3/DI water nanofluids were employed as the working fluid in a screen mesh wick heat pipe placed horizontally. The straight heat pipe configuration is altered for more practicality in use, with crimped edges, extended conduction lengths, and minute surface depressions. The heat pipe is tested at various levels of heat inputs and concentrations of Al2O3 nanoparticles. The evaporator section is heated by circulating water through a heating chamber, and the condenser section is cooled under free convection. The experimental results show an optimum reduction of 22% in the thermal resistance value using 1 vol% of Al2O3/DI nanofluids as compared to DI water at low heat input of 12 W. The stabilized operation of the heat pipe is observed at high heat input of 73 W and at low concentration of 0.005 vol% Al2O3/DI water nanofluids. The findings emphasize potential for nanofluids as future heat pipe fluids.  相似文献   

5.
Nanofluids are a suspension of particles with ultrafine size in a conventional base fluid that increases the heat transfer performance of the original base fluid. They show higher thermal performance than base fluids especially in terms of the thermal conductivity and heat transfer coefficient. During the last decade, many studies have been carried out on the heat transfer and flow characteristics of nanofluids, both experimentally and theoretically. The purpose of this article is to propose a dispersion model for predicting the heat transfer coefficient of nanofluids under laminar flow conditions. TiO2 nanoparticles dispersed in water with various volume fractions and flowing in a horizontal straight tube under constant wall heat flux were used. In addition, the predicted values were compared with the experimental data from He et al. [14]. In the present study, the results show that the proposed model can be used to predict the heat transfer behaviour of nanofluids with reasonable accuracy. Moreover, the results also indicate that the predicted values of the heat transfer coefficient obtained from the present model differ from those obtained by using the Li and Xuan equation by about 3.5% at a particle volume fraction of 2.0%.  相似文献   

6.
ABSTRACT

Nanofluids are the combination of a base fluid with nanoparticles with sizes of 1–100 nm. In order to increase the heat transfer performance, nanoparticles with higher thermal conductivity compared to that of base fluid are introduced into the base fluid. Main parameters affecting single-phase and two-phase heat transfer of nanofluids are shape, material type and average diameter of nanoparticles, mass fraction and stability of nanoparticles, surface roughness, and fluid inlet temperature. In this study, the effect of inlet temperature of deionized water/alumina (Al2O3) nanoparticle nanofluids was both experimentally and numerically investigated. Nanofluids with a mass fraction of 0.1% were tested inside a microtube having inner and outer diameters of 889 and 1,067 µm, respectively, for hydrodynamically developed and thermally developing laminar flows at Reynolds numbers of 650, 1,000, and 1,300. According to the obtained numerical and experimental results, the inlet temperature effect was more pronounced for the thermally developing region. The performance enhancement with nanoparticles was obtained at rather higher Reynolds numbers and near the inlet of the microtube. There was a good agreement between the experimental and numerical results so that the numerical approach could be further implemented in future studies on nanofluid flows.  相似文献   

7.
Effective thermal conductivity, effective thermal diffusivity, and effective specific heat of nanofluids were simultaneously measured by using a transient double hot-wire technique. Several types of nanofluids were prepared by suspending different volume percentages (1 to 5%) of titanium dioxide (TiO2), aluminum oxide (Al2O3), and aluminum (Al) nanoparticles in ethylene glycol and engine oil. While effective specific heats of these nanofluids decrease substantially with nanoparticle volume fraction, the enhanced effective thermal conductivity and effective thermal diffusivity were found to increase significantly with increasing volumetric loading of these nanoparticles. The increments of the effective thermal diffusivity of nanofluids were slightly larger than their effective thermal conductivity values. Predictions of the effective specific heats of nanofluids by the volume fraction mixture rule-based model showed fairly good agreement (within 7%) with the experimental results. Besides particle volume fraction, particle material, particle shape and the type of base fluid were identified to have influence on these properties of nanofluids. Both the calibration results of the base fluids (system accurate to ≤2.7%) and uncertainty analysis (uncertainty ≤2.1%) indicate high accuracy of using the double hot-wire method to simultaneously measure the effective thermal conductivity, effective thermal diffusivity, and specific heat of nanofluids.  相似文献   

8.
The effect of using nanofluids on heat transfer and fluid flow characteristics in rectangular shaped microchannel heat sink (MCHS) is numerically investigated for Reynolds number range of 100–1000. In this study, the MCHS performance using alumina–water (Al2O3-H2O) nanofluid with volume fraction ranged from 1% to 5% was used as a coolant is examined. The three-dimensional steady, laminar flow and heat transfer governing equations are solved using finite volume method. The MCHS performance is evaluated in terms of temperature profile, heat transfer coefficient, pressure drop, friction factor, wall shear stress and thermal resistance. The results reveal that when the volume fraction of nanoparticles is increased under the extreme heat flux, both the heat transfer coefficient and wall shear stress are increased while the thermal resistance of the MCHS is decreased. However, nanofluid with volume fraction of 5% could not be able to enhance the heat transfer or performing almost the same result as pure water. Therefore, the presence of nanoparticles could enhance the cooling of MCHS under the extreme heat flux conditions with the optimum value of nanoparticles. Only a slight increase in the pressure drop across the MCHS is found compared with the pure water-cooled MCHS.  相似文献   

9.
A half-moon shape enclosure which has a very wide range of practical applications in heat transfer is introduced for the first time in this article. The heat transfer is analyzed introducing different commercially available nanofluids such as water–Al2O3, water–Cu, water–TiO2 in this half-moon enclosure. A variable thermal boundary condition is assigned to the model, and the finite-element method is used for the numerical solution of the problem. The effect of solid volume fraction φ, along with a wide range of Rayleigh numbers (Ra = 105–107), are evaluated in various dimensionless times τ. The performance of the shape is described by using streamfunctions, isotherms, charts, and related graphs. It is found that heat transfer in the cavity can be enhanced up to 30% by to the presence of nanoparticles.  相似文献   

10.
The main goal of this paper is to compare single- and two-phase modeling approaches for forced convection flow of water/TiO2 nanofluid. The considered geometry is a horizontal tube with constant wall heat flux boundary condition where flow regime is turbulent. A computational fluid dynamics (CFD) approach is utilized for heat transfer and flow field estimation of the single-phase and three different two-phase approaches, namely, volume of fluid, mixture, and Eulerian models. Results are presented for Reynolds numbers ranging from 9000 to 21,000, for different nanoparticle diameters ranging from 20 to 40 nm, and for values of volume fractions ranging from 0 to 4%. The obtained results show that the values of entropy generation for thermal and turbulent dissipation are very close for the single-phase and mixture models. Numerical investigation showed that the values of entropy production for pure water are identical regardless of the CFD approach; however, when the volume fraction of nanoparticles increases, differences between the models appear.  相似文献   

11.
This paper analyzes heat transfer and fluid flow of natural convection in inclined cavity filled with CuO–water nanofluid and differentially heated. Conservation of mass, momentum, and energy equations are solved numerically by a control volume finite-element method using the SIMPLER algorithm for pressure–velocity coupling. The Prandtl number is fixed at 7.02, corresponding to water. Aspect ratio and solid volume fraction are varied from 0.5 to 4 and from 0% to 4%, respectively. The inclination angle is varied from 0° to 90° and used as a control parameter to investigate flow mode-transition and the accompanying hysteresis phenomenon (multi-steady solutions). It is found that the efficiency of heat transfer is improved by the addition of nanoparticles into base fluid; however, there is an optimum solid volume fraction that maximizes the heat transfer rate. Numerical results show also that the diameter of solid particle is an important parameter that affects the heat transfer efficiency; its impact is more important than the concentration itself. Effects of inclination angle on streamlines and on thermal boundary layer are presented. Combined effects of aspect ratio and inclination angle on heat transfer and hysteresis region are analyzed.  相似文献   

12.
Heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside typical radial flow cooling systems are numerically investigated in this paper. The laminar forced convection flow of these nanofluids between two coaxial and parallel disks with central axial injection has been considered using temperature dependent nanofluid properties. Results clearly indicate that considerable heat transfer benefits are possible with the use of these fluid/solid particle mixtures. For example, a Water/Al2O3 nanofluid with a volume fraction of nanoparticles as low as 4% can produce a 25% increase in the average wall heat transfer coefficient when compared to the base fluid alone (i.e., water). Furthermore, results show that considerable differences are found when using constant property nanofluids (temperature independent) versus nanofluids with temperature dependent properties. The use of temperature-dependent properties make for greater heat transfer predictions with corresponding decreases in wall shear stresses when compared to predictions using constant properties. With an increase in wall heat flux, it was found that the average heat transfer coefficient increases whilst the wall shear stress decreases for cases using temperature-dependent nanofluid properties.  相似文献   

13.
This study aims at achieving improved heat transfer potential for a tube-in-tube counterflow heat exchanger using silver/water (Ag) and copper oxide/water (CuO) nanofluids. Heat transfer and rheological characteristics of prepared nanofluids containing spherical nanoparticles of average size of 12–64 nm were experimentally investigated. Based on the experimental results, for increase in nanoparticles volume proportion up to 1.0%, convective heat transfer coefficient and Nusselt number were augmented by 52% and 47.5% for Ag nanofluids, and 27.6% and 24.3% for CuO nanofluids, respectively, while compared with base fluid. Also, at higher Reynolds number typically around 7500 the heat transfer potential was also increased considerably. However, increased particle loading eventually increased the density and dynamic viscosity of nanofluids, which increased frictional pressure drop from 4% to 22.2%. The increased heat transfer rate at increased particle concentration was attributed to the thermal conductivity and diffusion of nanoparticles in fluid medium, whereas increased pressure drop was largely influenced by density and dynamic viscosity of nanofluids. Furthermore, the new correlations developed in this study based on the experimental results revealed that the mean deviation between experimental and predicted Nusselt number varied from +6% to –12% and from +3% to –7%, respectively, for Ag and CuO nanofluids.  相似文献   

14.
The main aim of this study is to enhance the thermal performance of loop heat pipe (LHP) charged with nanofluid as the working fluid. Thus, experiments are conducted to investigate heat transfer characteristics of using diamond-H2O nanofluid with nanoparticle mass concentration ranged from 0% to 3% in a LHP as a working medium for heat input range from 20 W to 60 W. The three-dimensional model, laminar flow and heat transfer governing equations are solved using the finite volume method. The simulations are carried out with three-dimensional model based on the characterization of the working fluid inside the LHP to give an insight into the heat transfer and fluid flow mechanism. The LHP performance is evaluated in terms of temperature distributions and total thermal resistance of LHP. It is inferred that the temperatures obtained at all points in evaporator side of LHP charged with diamond-H2O nanofluid are lower and reach their steady state faster than LHP charged with pure water. At the constant heat input, test results showed the average decrease of 5.7%?10.8% at nanoparticle mass concentrations ranging from 0.5% to 3% in Rth of LHP as compared with pure water (0%).  相似文献   

15.
An experimental study was performed to investigate the thermal performance of an L-shaped grooved heat pipe with cylindrical cross section, which contained 0.5 wt% water-based Al2O3 nanofluid as the working fluid. The transient performance of the heat pipe and the effect of cooling water temperature on the heat transfer characteristics of the heat pipe were investigated. The outer diameter and the length of the heat pipe were 6 mm and 220 mm, respectively. Experimental results revealed that the temperature of the cooling water has a significant effect on the thermal resistance of the heat pipe containing nanofluids as its working fluid. By increasing the cooling water temperature from 5°C to 27.5°C, the thermal resistance decreases by approximately 40%. At the same charge volume, test results indicated an average reduction of 30% in thermal resistance of heat pipes with nanofluid as compared with heat pipe containing pure water. For transient conditions, unsteady state time for nanofluids was reduced by approximately 28%, when compared with water as the working fluid.  相似文献   

16.
The article reports the results of heat transfer experimental tests on water-based TiO2 (9 wt%) and SiC (3, 6, 9 wt%) nanofluids. Measurements were performed in a two-loop test rig for immediate comparison of the thermal performances of the nanofluid with the base fluid. The convective heat transfer is evaluated in a circular pipe heated with uniform heat flux (from 20 to 240 kW/m2) and flow regimes from laminar to turbulent. Tests have been performed to compare the heat transfer of nanofluids and water at the same velocity (from 0.7 to 1.6 m/s) or Reynolds number (from 300 to 6000), and they have also been compared with values calculated from some of the most widely used correlations. The analysis of the experimental data shows a strong dependence on the parameter used, while both the nanofluid and water data have the same agreement with the calculated values. Nanofluids were manufactured through a two-step procedure: laser synthesis of nanoparticles followed by dispersion in water.  相似文献   

17.
Heat transfer characteristics of γ-Al2O3/water and TiO2/water nanofluids were measured in a shell and tube heat exchanger under turbulent flow condition. The effects of Peclet number, volume concentration of suspended nanoparticles, and particle type on the heat characteristics were investigated. Based on the results, adding of naoparticles to the base fluid causes the significant enhancement of heat transfer characteristics. For both nanofluids, two different optimum nanoparticle concentrations exist. Comparison of the heat transfer behavior of two nanofluids indicates that at a certain Peclet number, heat transfer characteristics of TiO2/water nanofluid at its optimum nanoparticle concentration are greater than those of γ-Al2O3/water nanofluid while γ-Al2O3/water nanofluid possesses better heat transfer behavior at higher nanoparticle concentrations.  相似文献   

18.
This numerical study reveals the heat transfer performance of hybrid/single nanofluids inside a lid-driven sinusoidal trapezoidal-shaped enclosure. The right and left inclined surfaces of the trapezium have been considered as insulated, whereas the bottom sinusoidal wavy and the flat top surfaces of the enclosure as hot and cold, respectively. The governing partial differential equations of fluid's velocity and temperature have been resolved by applying the finite element method. The implications of Prandtl number (4.2-6.2), Richardson number (0.1-10.0), undulation number (0-3), nanoparticles volume fraction (0%-3%), and nanofluid/base fluid (water, water–copper (Cu), water–Cu–carbon nanotube, water–Cu–copper oxide (CuO), water–Cu–TiO2, and water–Cu–Al2O3) on the velocity and temperature profiles have been studied. Simulated findings have been represented by means of streamlines, isothermal lines, and average Nusselt number of above-mentioned hybrid nanofluids for varying the governing parameters. The comparison of heat transfer rates using hybrid nanofluids and pure water has been also shown. The heat transfer rate is increased about 15% for varying Richardson number from 0.1 to 10.0. Blending of two nanoparticles suspension in base fluid has a higher heat transfer rate—approximately 5% than a mononanoparticle. Moreover, a higher average Nusselt number is obtained by 14.7% using the wavy surface than the flat surface of the enclosure. Thus, this study showed that applying hybrid nanofluid may be beneficial to obtain expected thermal performance.  相似文献   

19.
A set of three nanofluids of different blends were prepared with ethylene glycol–water and TiO2 nanoparticles and are characterized for thermal conductivity as a function of temperature and volume concentration of nanoparticles. The measurements were taken in the temperature range from 30 °C to 70 °C, which happens to be most widely used range of temperature for many cooling applications in heat transfer equipment. Nanofluids were prepared by dispersing the nanoparticles in base fluids such as (1) water, (2) ethylene glycol plus water in the ratio of 40%:60% and 3) ethylene glycol plus water in the ratio of 50%:50% by weight. Based on the experimental results, it is observed that the thermal conductivity of TiO2 nanofluids, considered in the present investigation, increases with increase in percentage of volume concentration of TiO2 and also with temperature. Current experimental investigation presents valuable data on the measured thermal conductivity of TiO2 nanofluids for very low volume concentrations from 0.2% to 1.0% of nanoparticles in the temperature range of 30 °C–70 °C.  相似文献   

20.
《Applied Thermal Engineering》2007,27(8-9):1501-1506
We have experimentally investigated the behaviour and heat transfer enhancement of a particular nanofluid, Al2O3 nanoparticle–water mixture, flowing inside a closed system that is destined for cooling of microprocessors or other electronic components. Experimental data, obtained for turbulent flow regime, have clearly shown that the inclusion of nanoparticles into distilled water has produced a considerable enhancement of the cooling block convective heat transfer coefficient. For a particular nanofluid with 6.8% particle volume concentration, heat transfer coefficient has been found to increase as much as 40% compared to that of the base fluid. It has also been found that an increase of particle concentration has produced a clear decrease of the heated component temperature. Experimental data have clearly shown that nanofluid with 36 nm particle diameter provides higher heat transfer coefficients than the ones of nanofluid with 47 nm particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号