首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
以淀粉为还原剂从废三元锂离子电池(LIBs)正极材料脱锂渣中回收Ni、Co和Mn,并研究其浸出动力学和机理。系统地研究搅拌速率、浸出温度、H2SO4浓度和淀粉用量对Ni、Co和Mn浸出率的影响。结果表明,在搅拌速率为500 r/min、硫酸浓度为1.5 mol/L、淀粉用量为6 g/L、浸出温度为80℃和浸出时间为60 min的优化条件下,Ni、Co和Mn的浸出率分别达到98.07%、96.52%和98.06%。根据冶金过程液固反应动力学模型,脱锂渣的浸出动力学可以用化学反应控制的未反应收缩核模型很好地进行描述。在浸出反应中,Ni、Co和Mn的表观反应活化能分别为93.32、102.84和95.68 k J/mol,H2SO4的表观反应级数分别为0.9225、1.0335和1.1285。淀粉容易制取、成本低,可取代传统还原剂用于从废三元锂电池中提取有价金属。  相似文献   

2.
采用硫酸肼作为锂、镍、钴和锰从废锂离子电池中浸出时的还原剂,结合条件实验对浸出机理和浸出动力学进行研究。在最优条件:硫酸2.0 mol/L、硫酸肼30 g/L、固液比50 g/L、温度80℃和浸出时间60 min下,97%的Li、96%的Ni、95%的Co以及86%的Mn被浸出。通过浸出动力学分析得出Li、Ni以及Co的浸出活化能分别为44.32、59.37和55.62 k J/mol,表明浸出过程受化学反应控制。XRD和SEM-EDS分析结果表明,浸出渣的主要组成为MnO_2。上述研究结果表明,硫酸肼可作为废锂离子电池中有价金属浸出的有效还原剂。  相似文献   

3.
基于田口方法,提出微波浸出铜阳极泥的优化方法,并对铜、碲、硒的浸出率进行信噪比分析。结果表明,固液比对铜、碲、硒浸出率的贡献率最大,贡献率分别达到60.83%、54.76%和62.05%。固液比是铜阳极泥微波浸出过程最重要的工艺参数,时间对于铜、碲浸出率为较重要因素,酸浓度对于硒浸出率为较重要因素,微波功率对于铜、碲、硒浸出率的贡献率都较小,分别为4.23%、12.37%和10.32%。铜浸出最优条件如下:微波功率450 W、时间5 min、固液比0.10 g/mL、酸浓度1.0 mol/L;碲、硒浸出最优条件如下:微波功率700 W、时间9 min、固液比0.10 g/mL、酸浓度1.0 mol/L。在优化后的工艺条件下进行验证实验,铜浸出率达到99.88%以上,碲浸出率达到95.70%以上,硒浸出率达到38.22%以上。  相似文献   

4.
以CaSO4制备得到的CaS为还原剂,研究氧化锰矿的还原-酸浸过程,考察硫化钙与矿石的质量比、还原温度、还原时间、液固比、搅拌速率、浸出温度、浸出时间和H2SO4浓度对氧化锰矿中锰及铁浸出率的影响。结果表明:优化的还原工艺条件为硫化钙与矿石质量比1:6.7、液固比5:1、搅拌速率300 r/min、还原温度95°C、还原时间2.0 h;酸浸工艺条件为搅拌速率200 r/min、H2SO4浓度1.5 mol/L、浸出温度80°C、浸出时间5 min。在此优化条件下,锰的浸出率达到96.47%,而铁的浸出率仅为19.24%。该工艺可以应用于不同类型氧化锰矿中锰的提取,且锰的浸出率均高于95%。  相似文献   

5.
以低冰镍为研究对象,采用FeCl_3-HCl溶液体系高效浸提目标金属Ni、Cu、Co,系统地研究FeCl_3溶液的浓度、盐酸溶液的浓度、浸出温度和时间对Ni、Cu、Co浸出率的影响,并对Ni的浸出动力学进行探讨。结果表明:在最优浸出条件下,即FeCl_3溶液的浓度为1.0 mol/L、盐酸溶液的浓度为0.5 mol/L、浸出温度90℃、浸出时间7 h时,Ni、Cu、Co浸出率分别达到98.4%、98.9%和97.3%。当温度为60~90℃时,Ni的浸出反应符合未反应核收缩模型,代入动力学方程分析后发现,Ni浸出反应过程是界面化学反应控速,表观活化能为38.4kJ/mol。  相似文献   

6.
以生物质燕麦秸秆粉为还原剂,在硫酸条件下酸浸回收废旧锂电池中的Co,并对其浸出过程进行动力学研究。结果表明:0~20 min酸浸Co的过程为反应核收缩模型,表观活化能为27.5 k J/mol;30~150 min(低于80℃)Co的浸出过程也符合反应核收缩模型,表观活化能为28.32 k J/mol,受扩散和化学反应混合控制,其中又以化学反应控制为主。在液固比为10 m L/g,单位质量电池渣所用麦秆粉量0.7 g、硫酸浓度2 mol/L、温度90℃、反应时间2 h的条件下,电池粉中Co的浸出率达到99%以上。  相似文献   

7.
《轻金属》2015,(11)
为了提高粉煤灰的综合利用价值,利用水热活化法对烧结处理的粉煤灰进行酸浸实验,分别探讨了烧结过程中烧结温度、烧结时间以及酸浸过程中浸取液酸度、液固比、温度和时间等因素对粉煤灰中镓的浸出效果的影响。实验结果表明:当烧结温度为800℃、烧结时间为2 h、浸取液酸度为6 mol/L、液固比为15:1(m L:g)、浸取温度为140℃、浸取时间为2 h,粉煤灰中镓的浸出率为89.7%。  相似文献   

8.
镍红土矿高压酸浸过程的金属元素浸出行为   总被引:3,自引:0,他引:3  
以镍、钴的提取为目的,研究褐铁矿型镍红土矿高压酸浸过程中各金属元素的浸出行为,探讨硫酸加入量、浸出温度、浸出时间及液固比对各金属元素浸出率的影响.实验结果表明,在优化条件下Ni、Co、Mn和Mg的浸出率分别达到97%、96%、93%和95%以上,则Fe的浸出率小于1%.对高压浸出渣的分析表明,渣中的铁和硫主要分别以赤铁...  相似文献   

9.
采用氧化浸出和电位控制技术从铜冶炼烟尘中浸出金属,研究H2O2用量、H2O2加入速度、初始盐酸浓度、浸出温度、初始液固比和浸出时间对金属浸出率的影响。最终得到最优浸出条件为:H2O2用量0.8mL/g(氧化还原电位为429 mV)、H2O2加入速度1.0 mL/min、初始硫酸浓度1.0 mol/L、初始盐酸浓度1.0 mol/L、浸出温度80°C、初始液固比5:1 mL/g以及浸出时间1.5 h。在此最优条件下,铜冶炼烟尘中的铜和砷能被有效地浸出,剩下的浸出渣可作为一种合适的铅冶炼资源。此时,铜、砷和铁的平均浸出率分别为95.27%、96.82%和46.65%。  相似文献   

10.
采用浸出方法使砷滤饼中的铜砷元素进行分离,铜以硫化铜的形式沉淀,砷以砷酸根离子进入溶液中。考察NaCl浓度、Na_2S添加量、液固比、时间及温度等因素对砷滤饼中砷、铜浸出率的影响。得出最优的工艺条件如下:NaCl溶液浓度为20g/L、液固比7:1、Na_2S与砷滤饼质量比3:4、浸出时间4 h、温度80℃、H_2O_2 20 m L。在此最优工艺条件下,砷浸出率高达95.56%,铜浸出率低于0.5%,浸出渣铜含量富集至33.6%。浸出液采用硫酸亚铁沉砷方法,沉砷率可以达到98%,生成的砷酸铁晶体含砷量为32.15%,滤液含砷量为0.23g/L,滤液可以返回浸出过程,实现循环利用。  相似文献   

11.
以粗铋碱性精炼产生的碲渣为原料,基于高级氧化技术(AOP),在硫酸体系中协同氧化浸出碲渣中的碲和有价金属,研究NaCl浓度、H_2O_2体积分数、H_2O_2滴加速度、H_2SO_4浓度、浸出温度、浸出时间、气体流速和液固比等工艺参数对碲、铜、铋、锑和铅等金属浸出行为的影响,确定最佳工艺参数。结果表明:在NaCl浓度0.75 mol/L、H_2O_2体积分数20%、H_2O_2滴加速度1.2 mL/min、H_2SO_4浓度2.76 mol/L、浸出温度60℃、浸出时间2.5 h、气体流速2.5 L/min和液固比10 mL/g的优化条件下,碲、铜和铋的浸出率分别达95.75%、91.88%和90.23%,而锑和铅的浸出率仅分别为4.84%和0.08%,实现碲渣中碲的高效浸出及有价金属的有效分离和富集。  相似文献   

12.
针对有机硅行业生产过程中产生的废触体,提出水浸预处理-氧化酸浸-旋流电积制备高纯铜的工艺。采用单因素实验法,分别考察反应温度、液固比、反应时间等因素对水浸预处理及氧化酸浸效果的影响。结果表明:在反应温度80℃、反应时间30 min、液固比3∶1 mL/g的优化条件下进行水浸预处理,处理后氯、铁的去除率可分别达到93.95%、5.25%,而铜不浸出;在双氧水用量为理论用量的2.0倍、反应温度为30℃、硫酸浓度为1.25 mol/L、液固比为3∶1 mL/g、反应时间为20 min的优化条件下,氧化酸浸过程中铜的浸出率可达93.59%,溶液中铁含量仅为0.25 g/L,且循环浸出时浸出率保持稳定。经循环浸出富集后的硫酸铜浸出液采用旋流电积制备高纯铜,得到的产品形貌平整,铜含量大于99.98%,达到GB/T467—2010的要求。  相似文献   

13.
采用废茶叶在硫酸溶液中还原浸出加蓬和湘西氧化锰矿石,探索废茶叶用量、硫酸浓度、固液比、浸出温度和反应时间对浸出过程的影响。对加蓬氧化锰矿,优化的浸出条件为:氧化锰矿与废茶叶的质量比10:4、硫酸浓度2.5 mol/L、固液比7.5:1、浸出温度368 K、浸出时间8 h;在此条件下,加蓬氧化锰矿的浸出率几乎达100%。对于湘西氧化锰矿,优化浸出条件为:氧化锰矿与废茶叶的质量比10:1、硫酸浓度1.7 mol/L、液固比7.5:1、温度368 K、浸出时间8 h;在此条件下,锰的浸出率达到99.8%。氧化锰矿的还原浸出过程符合内扩散控制模型,加蓬和湘西氧化锰矿石的还原浸出反应表观活化能分别为38.2 kJ/mol和20.4 kJ/mol。采用X-射线衍射(XRD)和扫描电子显微镜(SEM)对浸出前、后的锰渣进行表征。  相似文献   

14.
高铁锌焙砂选择性还原焙烧-两段浸出锌   总被引:1,自引:0,他引:1  
采用还原焙烧将高铁锌焙砂中的铁酸锌选择性地分解为氧化锌和磁铁矿,再通过两段浸出工艺回收锌,以实现锌铁分离和获得以磁铁矿为主的浸出渣。主要考察了还原焙烧、中性浸出及低酸浸出条件对锌焙砂中锌、铁浸出率的影响。结果表明:通过还原焙烧可以显著地提高锌焙砂的锌浸出率;中性浸出的最佳条件为浸出温度60℃、液固比10:1、初始酸度45 g/L和浸出时间2 h;低酸浸出的最佳条件为浸出温度70℃、液固比10:1、初始酸度60 g/L、搅拌速度300 r/min和浸出时间2 h。在最佳条件下,两段浸出的总锌浸出率约为90%,总铁浸出率约为5%。经XRD和SEM/EDS分析,浸出渣以磁铁矿为主,其次是闪锌矿和铁酸锌;铁酸锌存在的主要原因是在还原焙烧过程中被氧化锌等矿物包裹,使其分解不充分。  相似文献   

15.
在微波炉中采用双氧水和乙酸溶液浸出由转炉和闪速炉渣组成的混合铜渣。该混合铜渣含51%Fe_2O_3、3.8%CuO、3.2%Zn。研究表明,对混合渣浸出率影响较大的因素有:浸出时间,液固比,双氧水浓度和乙酸浓度。在最优的浸出条件下:乙酸浓度4 mol/L,双氧水浓度4 mol/L,微波功率900 W,浸出时间30 min,液固比25 mg/L,浸出温度100°C,铜、铁、锌的浸出率分别可达到95%、1.6%和30%。与传统的浸出工艺相比较,微波浸出可缩短浸出时间,同时,可选择性浸出渣中的金属元素。动力学研究表明,渣中金属元素的浸出可用一收缩未反应核模型来描述,浸出反应的表观活化能为16.64 kJ/mol,反应级数为1.09.  相似文献   

16.
研究锌粉置换镓锗渣的高压酸浸过程,考察硫酸浓度、液固比、浸出时间、浸出温度、助浸剂种类和添加量对Ga、Ge浸出率以及浸出渣过滤性能的影响。结果表明:增加硫酸浓度有利于Ga、Ge的浸出,但硫酸浓度超过156 g/L后,反而不利于Ge的浸出。浸出时间和温度对Ga、Ge浸出率影响较小,但增加浸出时间或提高反应温度均有利于改善浸出渣的过滤性能。添加硝酸钠或硝酸钙均可促进Ga、Ge的浸出,且硝酸钙的添加还可改善浸出渣的过滤性能。在硫酸浓度156 g/L、助浸剂硝酸钙60 g/L、液固比8、浸出温度150℃下浸出3 h,Ga、Ge浸出率可分别达到98%和94%以上,且浸出料浆过滤速度较常压酸浸时的提高近20倍。  相似文献   

17.
采用碱性Na2EDTA溶液从次氧化锌烟灰中回收铅。探讨温度、浸出时间、Na2EDTA浓度和起始NaOH浓度对铅、锌浸出率的影响。得到最优实验条件如下:液固比5:1 mL/g、搅拌速度650 r/min、Na2EDTA浓度0.12mol/L、NaOH初始浓度0.5 mol/L、温度70°C、浸出时间120 min。在最优实验条件下,铅、锌、氟和氯的平均浸出率分别为89.92%、0.94%、62.84%和90.02%。浸出液用于电沉积铅粉。在温度为60°C、电流密度为200A/m2、H3PO4浓度为1.5 g/L、铅离子浓度不低于5 g/L时,电沉积铅粉平均电流效率大约为93%,阴极铅纯度高于98%。电沉积1 kg铅粉大约消耗0.218 kg Na2EDTA和0.958 kW·h电能。  相似文献   

18.
失效丙烷脱氢催化剂以α-Al2O3为载体,由于载体α-Al2O3酸碱不溶的性质,采用盐酸-氯酸钠浸出回收其中的铂。由于失效催化剂积碳较高,为38.84%,先焙烧除碳预处理,再研究温度、液固比、时间等浸出条件对铂浸出率的影响。结果表明,失效催化剂中铂的适宜浸出条件为浸出温度80 ℃,液固比8:1 (mL/g),反应时间60 min,HCl浓度6 mol/L,饱和氯酸钠溶液与原料质量比1:6 (mL/g),此时铂浸出率98.64%,铂得到有效回收。  相似文献   

19.
从粉煤灰提取铝铁新工艺研究   总被引:3,自引:0,他引:3  
以粉煤灰为原料,探讨了粉煤灰中铝铁的提取工艺,通过正交实验及验证实验得出了焙烧活化和酸浸的最佳工艺条件。实验结果表明,最佳焙烧活化条件为:焙烧时间1h、粉煤灰∶KF(质量比)为20∶4、焙烧温度为800℃;酸浸条件为:浸出温度为100℃、浸出时间为2h、浸出酸浓度6mol/L、液固比为4∶1,粉煤灰铝铁浸出率可达到96.92%。表明该工艺从粉煤灰提取铝铁具有较好的效果。  相似文献   

20.
高铜高砷烟灰加压浸出工艺   总被引:8,自引:0,他引:8  
研究了加压浸出在高铜高砷烟灰浸出中的应用.结果表明:高铜高砷烟灰加压浸出较优的工艺条件为,液固比(mL/g)为5-1,初始硫酸浓度为0.74 mol/L,浸出温度453 K,氧分压0.7 MPa,浸出时间2 h,搅拌转速500 r/min;在该条件下,Cu、Zn浸出率分别约95%和99%,As浸出率约20%,Fe浸出率仅6%左右;Cu、Zn与As、Fe的分离效果较好,该浸出工艺运行效果良好且稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号