首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Five Ba(Co1/3Nb2/3)O3 samples sintered at different temperatures (form 1350 to 1550 °C), one Ba(Mg1/3Ta2/3)O3 and a Ba(Mg1/3Nb2/3)O3 sample were examined by Raman scattering to reveal the correlation of the 1:2 ordered perovskite structure with the microwave properties, such as dielectric constant and Q factors. The Ba(Co1/3Nb2/3)O3 sample sintered at 1400 °C, which possesses the highest microwave Q value and the lowest dielectric constant among five Ba(Co1/3Nb2/3)O3 samples, has the narrowest width and the highest frequency of the stretch mode of oxygen octahedron (i.e. A1g(O) near 800 cm−1). We found that the dielectric constant is strongly correlated with the Raman shift of A1g(O) stretch modes, and the width of A1g(O) stretch mode reflects the quality factor Q × f value in the 1:2 ordered perovskite materials. This concludes that the oxygen octahedron play an important role of the material's microwave performance. Based on the results of Q × f values and the lineshapes of A1g(O) stretch mode, we found that the propagation of microwave energy in Ba(Mg1/3Ta2/3)O3 and Ba(Mg1/3Nb2/3)O3 shows weak damping behavior, however, Ba(Co1/3Nb2/3)O3 samples sintered at different temperature exhibit heavily damped behavior.  相似文献   

2.
The structural, vibrational, densification, and microwave properties of Ba(Co1/3Nb2/3)O3 ceramics with small compositional variations along several tie lines in the ternary BaOCoONb2O5 diagram were studied. The results showed that very small deviation from stoichiometric Ba(Co1/3Nb2/3)O3 composition has profound effect on Q × f, degree of ordering, densification, and phase assemblage. The 0.94 Ba(Co1/3Nb2/3)O3–0.06 Ba5Nb4O15 ceramic has the highest Q × f value (71 THz) – a value two times larger than that of stoichiometric Ba(Co1/3Nb2/3)O3 (36 THz). Transformation from the (partial) disordered distribution of Co and Nb cations to 1:2 ordered arrangement in the octahedral sites was found to increase the Q factor of the high density and single phase ceramics. It was also observed that formation of very small amount of Ba9CoNb14O45 second phase degraded Q × f value severely for the dense and highly ordered Nb-rich and Ba-deficient ceramics.  相似文献   

3.
The effect of B-site cation deficiency on the structure and microwave dielectric properties of Ba(Co1/3Nb2/3)O3 (BCN) was investigated. Stoichiometric and co-deficient compositions based on Ba(Co1/3−xNb2/3)O3 [x = 0.0, 0.01, 0.02, 0.03 and 0.04] were prepared using the conventional mixed oxide route. Small amounts of V2O5 (0.1 wt%) were added to promote densification. The dielectric loss is very sensitive to the composition; it was found that co-deficiency degraded the microwave dielectric properties. The stoichiometric formulation (x = 0) exhibited the best microwave properties. The improvements in the microwave dielectric properties were achieved by increasing the degree of 1:2 cation ordering. The highly ordered, stoichiometric BCN ceramics showed a relative permittivity (ɛr) of 32, quality factor (Q × f) of 66,500 GHz and a negative temperature coefficient of resonant frequency (τf) of −10 ppm/°C at 4 GHz.  相似文献   

4.
The effect of low-level CeO2 addition and cooling rate on sintering, microstructures, phase formation, 1:2 ordering and microwave dielectric properties of Ba3Co0.7Zn0.3Nb9 (BCZN) was investigated. It was found that low levels doping of CeO2 (up to 0.5 wt.%) could significantly improve densification of the specimens and their properties. Dielectric properties of CeO2-doped samples were sensitive to 1:2 ordering in the B-site. Slow cooling after sintering improved the unloaded quality factor (Q × f values) significantly. The B-site ordering parameter (S) and lattice constant (c/a) values increased as the cooling rate decreased. Ba5Nb4O15 (5/0/4) and Ba8(Co,Zn)1Nb6O24 (8/1/6) secondary phases were found on the surface of all the samples. At 0.4 wt.% CeO2 the specimens showed maximum Q × f of 84,000 GHz attributed to high density and the degree of cation ordering.  相似文献   

5.
The microwave dielectric properties of Ca(Li1/4Nb3/4)O3–CaTiO3 ceramics have been investigated with regard to calcination temperature and the amount of CaTiO3 additive. Ca(Li1/4Nb3/4)O3 ceramics with an orthorhombic crystal structure can be synthesized by the conventional mixed oxide method by calcining at 750 °C and sintering at 1275 °C. The dielectric constant (ɛr), quality factor (Q × f0) and temperature coefficient of resonant frequency (τf) for Ca(Li1/4Nb3/4)O3 ceramics are 26, 13,000 GHz and −49 ± 2 ppm/°C, respectively. With increase in the CaTiO3 content, ɛr and τf are increased and the quality factor decreased due to the solid-solution formation between Ca(Li1/4Nb3/4)O3 and CaTiO3. The 0.7Ca(Li1/4Nb3/4)O3–0.3CaTiO3 ceramic exhibits ɛr of 44, quality factor (Q × f0) of 12,000 GHz and τf of −9 ± 1 ppm/°C.  相似文献   

6.
Ceramics in the system Ba(Ni1/3Nb2/3)O3–Ba(Zn1/3Nb2/3)O3 (BNN–BZN) were prepared by the mixed oxide route. Powders were mixed and milled, calcined at 1100–1200 °C then pressed and sintered at temperatures in the range 1400–1500 °C for 4 h. Selected samples were annealed or slowly cooled after sintering. Most products were in excess of 96% theoretical density. X-ray diffraction confirmed that all specimens were ordered to some degree and could be indexed to hexagonal geometry. Microstructural analysis confirmed the presence of phases related to Ba5Nb4O15 and Ba8Zn1Nb6O24 at the surfaces of the samples. The end members BNN and BZN exhibited good dielectric properties with quality factor (Qf) values in excess of 25,000 and 50,000 GHz, respectively, after rapid cooling at 240 °C h−1. In contrast, mid-range compositions had poor Qf values, less than 10,000 GHz. However, after sintering at 1450 °C for 4 h and annealing at 1300 °C for 72 h, specimens of 0.35(Ba(Ni1/3Nb2/3)O3)–0.65(Ba(Zn1/3Nb2/3)O3) exhibit good dielectric properties: τf of +0.6 ppm °C−1, relative permittivity of 35 and quality factor in excess of 25,000 GHz. The improvement in properties after annealing is primarily due to an increase in homogeneity.  相似文献   

7.
We investigated effects of substituting cobalt for magnesium on microstructures and microwave dielectric properties of BaMg1/3Nb2/3O3 ceramics. Nucleation and growth of 1:2 ordered domains dominate microstructural variations for Ba(Mg1?xCox)1/3Nb2/3O3 ceramics. Microstructures such as grains sizes and domain sizes significantly dominate variations of Q × f value. Less ordered domains are nucleated when substituting small amount of cobalt (x < 0.1). Accordingly, domains and grains significantly grow with increased cobalt substitution. The 1:2 ordering degree is subsequently increased, and Q × f achieves a maximum value at x = 0.05. Nevertheless, while cobalt substitution exceeds x = 0.1, more ordered nuclei occur and consequently affect the domain growth and the grain growth. The Q × f value remarkably decreases at x = 0.1, and varies due to different ordering degrees and compositions. The Q × f value of specimens at x = 0.05 becomes as high as 43,000, and is similar to that of specimens at x = 0.5.  相似文献   

8.
The large amount of Q factor variation within dense, highly ordered region of Ba(Zn1/3Ta2/3)O3 (BZT) system were studied by means of crystal structure analysis, micro-structural analysis and electrical measurements using samples around stoichiometric BZT. Presence of small amount of secondary phase (e.g., less than 1%) affects Q factor decrements even in the dense (density = 7.15–7.78 g/cm3), highly ordered (estimated ordering ratio around 70–80%) samples. This suggests that the structural order and the presence of the secondary phase are playing an important role on Q factor in BZT system. Therefore, suppressions of small amount of secondary phase (e.g., less than 1%) by strict composition control can provide further Q factor improvements. Single phase ordered perovskite obtained in the vicinity of stoichiometric BZT showed an improvement in Q factor (Q × f = 133,000 GHz) by extended sintering up to 400 h at 1400 °C.  相似文献   

9.
0.9Ba([Zn0.60Co0.40]1/3Nb2/3)O3–0.1Ba(Ga0.5Ta0.5)O3 (BCZN–BGT) ceramic resonators (quality factor, Q=32,000 at the rate of 3.05 GHz, relative permittivity, εr=35 and temperature coefficient of the resonant, τf=0) have been fabricated which are suitable in terms of cost and performance for base stations supporting third generation architecture. The new compounds are perovskite structured (a=4.09 Å) but exhibit no superlattice reflections at any heat treatment temperature according to X-ray diffraction (XRD). However, annealing and quenching of samples followed by transmission electron microscopy and Raman spectroscopy revealed an order–disorder phase transition at ∼1200 °C. Annealing below this temperature (1100 °C) gave rise to discrete ±1/3{h k l}p and diffuse 1/2{h k l}p superlattice reflections in the same 〈1 1 0〉p zone axis electron diffraction patterns and the presence of F2g and A1g modes in Raman spectra. It is proposed that ±1/3{h k l}p reflections result from 1:2 long-range ordered domains of BCZN whereas the diffuse 1/2{h k l}p reflections arise from short range fcc ordered BGT rich regions at the 1:2 domain boundaries. A short-range ordered fcc superlattice was observed in samples quenched from above the order–disorder phase transition (>1200 °C) which was accompanied by the presence of only the A1g mode in Raman spectra.  相似文献   

10.
Effects of nonstoichiometry on crystal structure and the microstructure of double perovskite Ba(Mg1/2W1/2)O3 ceramics have been investigated by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and Raman spectrometry in this paper. The microwave dielectric properties of the ceramics were studied with a network analyzer at the frequency of about 8–11 GHz. The results show that small deviation from stoichiometric composition has little influence on the crystal structure such as B-site 1:1 ordering degree. Evaporation of BaO was confirmed during the sintering of BMW ceramics, which in turn produce more BaWO4 phase. Ba-deficiency or W-excess in BMW could improve the sinterability and Q×f value, while Ba-excess or W-deficiency could suppress the formation of BaWO4 at the expense of increase in sintering temperature and decrease in Q×f value. Mg nonstoichiometry has little effect on the variation of BaWO4 content and Q×f value. Maximum Q×f value of about 140,000 GHz could be obtained for the Ba-deficient or W-excessive samples after sintering at 1500 °C/2 h or 1550 °C/2 h, respectively. All Mg-nonstoichiometric compositions exhibit high Q×f value of about 120,000 GHz after sintering at 1550 °C/2 h. All well-densified samples have dielectric permittivity of about 19–20 and τf value varied within the range of ?21~?28 ppm/°C.  相似文献   

11.
Raman, X-ray diffraction and extended X-ray absorption fine structure (EXAFS) measurements of xBa(Ni1/3Ta2/3)O3 + (1  x)Ba(Mg1/3Ta2/3)O3 samples with x = 0–0.03 were performed to reveal the nickel doping effect on the microwave properties. EXAFS result clearly shows that the nickel is located on the Mg lattice site. We also found that, as the nickel concentration increases, microwave dielectric constant decreases with the TaO and NiO bond distances. X-ray diffraction shows that the 1:2 ordered structure is degraded with the increasing of nickel concentration. The stretching phonon of the TaO6 octahedra, that is A1g(O) phonon near 800 cm−1, are strongly correlated to the microwave properties of xBa(Ni1/3Mg2/3)O3 + (1  x)Ba(Mg1/3Ta2/3)O3 samples. The large Raman shift and the large width of the A1g(O) imply rigid but distorted oxygen octahedral structure, therefore, the effect of nickel doping lowers the dielectric constant and the Q × f value of Ba(Mg1/3Ta2/3)O3 ceramic.  相似文献   

12.
The B2O3 added Ba(Zn1/3Nb2/3)O3 (BBZN) ceramic was sintered at 900 °C. BaB4O7, BaB2O4, and BaNb2O6 second phases were found in the BBZN ceramic. Since BaB4O7 and BaB2O4 second phases have an eutectic temperature around 900 °C, they might exist as the liquid phase during sintering at 900 °C and assist the densification of the BZN ceramics. Microwave dielectric properties of dielectric constant (ɛr) = 32, Q × f = 3500 GHz, and temperature coefficient of resonance frequency (τf) = 20 ppm/°C were obtained for the BZN with 5.0 mol% B2O3 sintered at 900 °C for 2 h. The BBZN ceramics were not sintered below 900 °C and the microwave dielectric properties of the BBZN ceramics sintered at 900 °C were very low. However, when CuO was added, BBZN ceramic was well sintered even at 875 °C. The liquid phase related to the BaCu(B2O5) second phase could be responsible for the decrease of sintering temperature. Good microwave dielectric properties of ɛr = 36, Q × f = 19,000 GHz and τf = 21 ppm/°C can be obtained for CuO doped BBZN ceramics sintered at 875 °C for 2 h.  相似文献   

13.
Ba(Mg1/3Ta2/3)O3 ceramic possessing extremely high Q × f value of more than 300 THz at microwave frequency was developed in our previous study. It is of great interest to understand the mechanism of microwave absorption in such a practical material. In the present study we report on the temperature dependence of the dielectric loss in the Ba(Mg1/3Ta2/3)O3. The mechanism of the microwave absorption is discussed using two phonons difference process. The samples were prepared by conventional solid state reaction and sintered at 1893 K in oxygen atmosphere. Dielectric properties in the microwave range were measured by Hakki & Colemann and resonant cavity methods in the temperature range of 20–300 K. Whispering gallery mode technique was used for the measurement of the dielectric properties at the millimeter wave frequency. Dielectric loss of the Ba(Mg1/3Ta2/3)O3 at the microwave frequency increases with temperature between 200 and 300 K in general agreement with the theory of intrinsic dielectric loss derived from the two phonon difference process. However below 200 K, the dielectric loss has shown a distinctive behavior with a loss peak at 40 K. It was inferred that the loss peak of the Ba(Mg1/3Ta2/3)O3 was caused by the local orientation polarization having dispersion at the microwave frequency.  相似文献   

14.
We report the development of a ceramic injection moulding (CIM) process to produce complex-shaped structures using high-performance microwave ceramic materials. In particular, we describe the synthesis methods and the structural, chemical and dielectric properties of Ba(Zn1/3Ta2/3)O3 (BZT) doped with Ni and Zr ceramics produced using ceramic injection moulding. Sintering the ceramic injection moulded Ba(Zn1/3Ta2/3)O3 to a relative density of ∼94% was possible at a temperature of 1680 °C and a time of 48 h. The best samples to date exhibit a dielectric constant, ɛr, of ∼30, a Q value, of ∼31,250 (i.e. tan δ < 3.2 × 10−5) at 2 GHz, and a temperature coefficient of resonance frequency, τf, of 0.1 ppm/°C.  相似文献   

15.
The ordering behaviour of Ba(Mg1/3Nb2/3)O3 ceramics (BMN) substituted by La3+, Na+, K+ was investigated using X-ray powder diffraction and transmission electron microscopy. The 1:2 ordered structure of BMN can be transformed to 1:1 ordered structure by substituting a small amount of La cation ion into the A-site. Moreover, the degree of ordering was increased with La content in the compound, and reached almost unity at [La] = 50 mol%. When the La ion in (Ba1−xLax)(Mg(1+x)/3Nb(2−x)/3)O3 (BLMN) was substituted by Na or K ions, the 1:1 ordered structure of BLMN was transformed into the 1:2 ordered structure. The degree of 1:2 ordering was influenced by the sintering temperature and the size difference between the A and B site ions.  相似文献   

16.
《Ceramics International》2007,33(6):951-955
The microwave dielectric properties of Sm(Zn1/2Ti1/2)O3 ceramics have been investigated. Sm(Zn1/2Ti1/2)O3 ceramics were prepared by conventional solid-state route with various sintering temperatures and times. The prepared Sm(Zn1/2Ti1/2)O3 exhibited a mixture of Zn and Ti showing 1:1 order in the B-site. Higher sintered density of 7.01 g/cm3 can be produced at 1310 °C for 2 h. The dielectric constant values (ɛr) of 22–31 and the Q × f values of 4700–37,000 (at 8 GHz) can be obtained when the sintering temperatures are in the range of 1250–1370 °C for 2 h. The temperature coefficient of resonant frequency τf was a function of sintering temperature. The ɛr value of 31, Q  ×  f value of 37,000 (at 8 GHz) and τf value of −19 ppm/°C were obtained for Sm(Zn1/2Ti1/2)O3 ceramics sintered at 1310 °C for 2 h. For applications of high selective microwave ceramic resonator, filter and antenna, Sm(Zn1/2Ti1/2)O3 is proposed as a suitable material candidate.  相似文献   

17.
A study of the dielectric properties, especially the Q × f value, of the tungstenbronze-type like (Ba1  αSrα)6  3xNd8 + 2xTi18O54 solid solutions in x = 0 system was carried out. These compositions near x = 0 have very low Q × f values. To improve the Q × f value of these materials, we tried two substitutional systems, which are (Ba1  αSrα)6Nd8Ti18O54 and Ba4Sr2(Nd1  βYβ)8Ti18O54. In the former composition, the Q × f value was increased from 206 to 5880 GHz in the range of 0  α  0.5. And we found that Sr ions substituted for Ba ions in A1 sites have good effect on increasing the Q × f value, but Sr ions substituted for Ba ions in A2 sites have poor effect on increasing it. The latter composition also has a small effect on increasing the Q × f value.  相似文献   

18.
The low sintering temperature and the good dielectric properties such as high dielectric constant (ɛr), high quality factor (Q × f) and small temperature coefficient of resonant frequency (τf) are required for the application of chip passive components in the wireless communication technologies. In the present study, the sintering behaviors and dielectric properties of Ba3Ti4Nb4O21 ceramics were investigated as a function of B2O3–CuO content. Ba3Ti4Nb4O21 ceramics with B2O3 or CuO addition could be sintered above 1100 °C. However, the additions of both B2O3 and CuO successfully reduced the sintering temperature of Ba3Ti4Nb4O21 ceramics from 1350 to 900 °C without detriment to the microwave dielectric properties. From the X-ray diffraction (XRD) studies, the sintering behaviors and the microwave dielectric properties of low-fired Ba3Ti4Nb4O21 ceramics were examined and discussed in the formation of the secondary phases. The Ba3Ti4Nb4O21 sample with 1 wt% B2O3 and 3 wt% CuO addition, sintered at 900 °C for 2 h, had the good dielectric properties: ɛr = 65, Q × f = 16,000 GHz and τf = 101 ppm/°C.  相似文献   

19.
The structure evolution, sintering behavior and microwave dielectric properties of La(2−x)/3Nax(Mg1/2W1/2)O3 (x = 0–0.5) were investigated in this paper. The X-ray diffraction (XRD) results show that all samples exhibit single phase, and the structure changed from orthorhombic when 0  x < 0.3 to monoclinic phase when 0.3  x  0.5. The size and ordering degree of A/B-site domains decrease with the increase in x value. The sintering temperature of the Na-doped samples increased compared to the pure La2/3(Mg1/2W1/2)O3 (LMW) due to the estimated decrease in the concentration of A-site vacancies. The addition of Na+ ion does not affect the dielectric permittivity greatly. The Q × f value decreases with the increase in x value, although the estimated concentration of A-site vacancies decreases with increasing x, which may be ascribed to the decrease of A/B-site ordering and domain size with the increase in x. The temperature coefficient of resonant frequency changed from negative values into positive values with the increase in x value.  相似文献   

20.
The effects of ZnB2O4 glass additions on the sintering temperature and microwave dielectric properties of Ba3Ti5Nb6O28 have been investigated using dilatometer, X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and a network analyzer. The pure Ba3Ti5Nb6O28 system showed a high sintering temperature (1250 °C) and had the good microwave dielectric properties: Q × f of 10,600 GHz, ɛr of 37.0, τf of −12 ppm/°C. It was found that the addition of ZnB2O4 glass to Ba3Ti5Nb6O28 lowered the sintering temperature from 1250 to 925 °C. The reduced sintering temperature was attributed to the formation of ZnB2O4 liquid phase and B2O3-rich liquid phases. Also the addition of ZnB2O4 glass enhanced the microwave dielectric properties: Q × f of 19,100 GHz, ɛr of 36.6, τf of 5 ppm/°C. From XPS and XRD studies, these phenomena were explained in terms of the reduction of oxygen vacancies and the formation of secondary phases having the good microwave dielectric properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号