首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
为改善司家营铁矿选厂强磁选作业对微细粒铁矿的回收效果,以现场强磁选给矿为研究对象,进行试验研究。结果表明,磁介质介质棒直径为1.5 mm和2.0 mm时比介质棒直径为3.0 mm时对现场强磁给矿的回收效果好。在此基础上进行的Φ1.5 mm和Φ2.0 mm介质棒数量比分别按1∶2和1∶1配比组成的混合磁介质磁选效果对比试验表明,配比为1∶1较1∶2时分选效果好。对Φ1.5 mm和Φ2.0 mm按数量比1∶1配比组成的混合磁介质进行现场工业试验,获得了铁品位为27.19%、作业回收率为72.23%、-0.045 mm粒级铁回收率为72.22%的精矿产品。ANSYS有限元分析结果表明:圆柱介质棒磁介质截面半径越小所产生的磁感应强度越强,但其作用的深度较浅,衰减速度快;Φ1.5 mm和Φ2.0 mm按数量比1∶1配比形成的混合磁介质可以合理分配磁场空间,同时具有磁场梯度高、分布均匀和不易堵塞的优点,可以提高强磁场磁选机对微细粒嵌布赤铁矿的分选指标。试验结果对提高司家营铁矿微细粒难选铁矿石的强磁选工艺回收率具有重要意义。  相似文献   

2.
黄建雄  陈禄政  丁利 《矿冶》2014,23(2):28-31
脉动高梯度磁选是微细粒弱磁性矿物的高效选矿技术,通过用微细粒赤铁矿进行脉动高梯度磁选试验,研究棒介质排列组合对高梯度磁选指标的影响。试验发现,棒介质排列组合对高梯度磁选指标具有明显影响,交叉排列优于矩形排列,可以获得更高的精矿品位、铁回收率和分选效率;随介质丝间距的增大和介质丝层数的减小,介质丝对磁性矿物的捕获能力降低,导致尾矿铁品位上升,分选效率下降,而精矿品位变化不明显。可以得出结论,棒介质排列组合优化,可以明显提升高梯度磁选的效能。  相似文献   

3.
《矿冶》2014,(2)
脉动高梯度磁选是微细粒弱磁性矿物的高效选矿技术,通过用微细粒赤铁矿进行脉动高梯度磁选试验,研究棒介质排列组合对高梯度磁选指标的影响。试验发现,棒介质排列组合对高梯度磁选指标具有明显影响,交叉排列优于矩形排列,可以获得更高的精矿品位、铁回收率和分选效率;随介质丝间距的增大和介质丝层数的减小,介质丝对磁性矿物的捕获能力降低,导致尾矿铁品位上升,分选效率下降,而精矿品位变化不明显。可以得出结论,棒介质排列组合优化,可以明显提升高梯度磁选的效能。  相似文献   

4.
针对东鞍山烧结厂强磁选作业尾矿铁品位偏高,现有的强磁设备不能有效回收细粒铁矿物的问题,在强磁给矿样品工艺矿物学研究基础上,基于聚团分选理论,通过聚团强磁选试验详细考察了分散剂及淀 粉用量、强磁分选参数等因素对微细粒铁矿强磁分选效果的影响,通过混磁精矿反浮选试验考察了选择性聚团预处理对反浮选分选指标的影响。聚团强磁选试验结果表明:在水玻璃用量为500 g/t、DLA用量为250 g/t ,搅拌转速为900 r/min、搅拌时间为5 min、矿浆pH值为10.0、冲次为170次/min、矿浆流速为120 mL/s、磁选背景磁感应强度为1.0 T的条件下,可获得铁品位为47.65%、铁回收率为71.54%的磁选指标,与不添加药 剂调浆相比,磁选作业铁回收率提高了4.58个百分点,选矿效率提高了2.42个百分点。混磁精矿反浮选试验结果表明:与常规高梯度强磁选—反浮选工艺相比,采用选择性聚团—高梯度强磁选—反浮选工艺最终获得 的精矿品位变化不大,而混磁精矿铁回收率提高了2.05个百分点,最终浮选精矿铁回收率提高了4.37个百分点。  相似文献   

5.
针对当前高梯度磁选机机械夹杂多、精矿富集比较低的问题,提出在高梯度磁选过程中使磁介质振动,通过形成振动—脉动新型复合力场提高分选精度。在此基础上,研发出一种新型周期式振动脉动高梯度磁选机,用于分选某微细粒铜钼混合精矿试验研究。结果表明:脉动力场有利于分散矿浆及冲洗磁介质表面吸附的矿粒,而振动力场能进一步减少磁介质内部夹杂,增加磁介质与矿粒的碰撞概率,对提高磁性精矿品位及回收率有明显作用。利用该种新型周期式振动脉动高梯度磁选机分选铜、钼品位分别为26.12%和0.36%的微细粒铜钼混合精矿,在适宜参数条件下获得产率为42.53%的高品位铜精矿,钼含量仅为0.07%、铜回收率为50.42%;钼精矿钼品位为0.57%、钼回收率为91.56%;试验钼去除率达80.56%,分选效率为40.61%,铜钼分离效果显著,分离产品粒级回收率分析结果进一步表明该磁选机能有效分选这种微细粒铜钼混合精矿。该种高梯度磁选机为细粒弱磁性矿的高度选择性分选提供了一种新的技术思路。  相似文献   

6.
棒介质层数对高梯度磁选指标的影响   总被引:2,自引:2,他引:0  
丁利  陈禄政  黄建雄  曾剑武 《矿冶》2014,23(1):9-13
棒介质作为高梯度磁选的一种分选介质,广泛应用于氧化铁矿、钛铁矿、黑钨矿等弱磁性金属矿的选矿和高岭土、石英、长石等非金属矿的除铁提纯。棒介质作为分选过程的载体,其结构构造(如排列、丝径、丝距、层数等)对棒介质堆内部的磁场特性和磁性矿粒动力学具有决定性影响,从而显著地影响高梯度磁选的效能。运用"单元介质"分析法,进行棒介质脉动高梯度磁选微细粒赤铁矿试验,分别研究2 mm和3 mm棒介质的介质丝层数对高梯度磁选指标的影响。试验结果表明,对每种层数的棒介质,随着磁感应强度上升,介质丝对磁性矿物的捕获能力增强,精矿产率和铁回收率增大,而精矿和尾矿品位下降,分选效率规律不明显;随棒介质层数的增加,高梯度磁选指标则明显提高。  相似文献   

7.
为探索在背景磁感应强度一定的前提下,提高赤铁矿高梯度强磁选指标的途径。采用不同充填率聚磁介质的高梯度强磁选机对齐大山铁矿选矿厂的扫中磁给和强磁给进行了高梯度强磁选试验。结果表明:随着高梯度磁选中聚磁介质充填率的提高,精矿铁品位呈逐渐降低趋势,精矿铁回收率呈逐渐升高趋势。强磁给中弱磁性赤铁矿与非磁性脉石矿物分离所需的最小磁场力比扫中磁给中弱磁性赤铁矿与非磁性脉石矿物分离所需的最小磁场力大,在背景磁感应强度和聚磁介质直径一定的情况下,强磁给高梯度分选所需的聚磁介质充填率更高。  相似文献   

8.
为了给高梯度磁选机聚磁介质的选择提供参考,以国外某微细粒赤铁矿石和广东某褐铁矿石的强磁扫选尾矿为对象,在SSS-II型水平磁场周期式高梯度磁选机上研究了棒状聚磁介质的形式和直径对高梯度磁选效果的影响。介质形式试验结果显示:表面具环状尖突起的异形棒介质与普通圆棒介质相比,可使国外矿样的精矿回收率提高3.17~6.17个百分点,说明异型棒介质对磁性颗粒的吸引力更强。介质直径试验结果显示:Φ4 mm异型棒介质与Φ3 mm和Φ5 mm异型棒介质相比,可使国外矿样的精矿回收率提高1.18~5.52个百分点,使广东矿样的精矿回收率提高2.14~2.98个百分点,说明适当增大介质直径有利于磁性物的回收,但介质直径过大时反而会降低对磁性物的捕捉能力。  相似文献   

9.
为将磁场梯度高的网介质应用在立环高梯度磁选机上而不发生堵塞,研发了一种反式水平磁场立环高梯度磁选机。该磁选机结构简单、设计合理,磁系与线圈位于转环上部,上部给矿,采用三重磁介质卸矿方式同时卸矿,不堵塞磁介质,既能连续批量处理,又能避免磁极头污染,对矿浆中的弱磁性颗粒具有很大的吸附力,分选效果显著。小型对比试验结果表明,反式水平磁场立环高梯度磁选机的网介质无液面分选相比常规立环高梯度磁选机的棒介质有液面磁分选,在微细粒铁矿物分选方面优势较大,具有良好的应用前景。  相似文献   

10.
国外某弱磁性铁矿石铁品位为41.07%。矿石中铁金属主要存在于赤褐铁矿中,铁在赤褐铁矿中分布率为80.33%,碳酸铁、硅酸铁及磁铁矿含量较少。为给该矿石开发利用提供依据,对其可选性进行研究。结果表明:在磨矿细度为-0.074 mm占92.28%时,采用高梯度强磁选机,在脉动冲程为4 mm、冲次为180 r/min、粗选背景磁感应强度为1.0 T、磁介质为Φ2+1.5 mm聚磁介质条件下,经1粗2扫、扫选精矿合并精选流程选别,获得了铁品位为60.08%、回收率为75.94%的精矿。用不同直径介质棒组合作为高梯度磁选的聚磁介质可以提高分选指标。  相似文献   

11.
以镜铁山粉矿强磁粗选尾矿中-0.037 mm粒级物料为选别原料,进行了高梯度磁选机聚磁介质优化研究。通过有限元数值模拟技术筛选、实验室试验、现场工业试验逐级验证,表明采用菱形聚磁介质替代圆棒聚磁介质,在精矿品位不下降的前提下,回收率可提高3个百分点以上。由此说明菱形聚磁介质对提高微细粒铁矿石回收率确实有效。  相似文献   

12.
太钢袁家村闪石型赤铁矿石中铁以赤(褐)铁矿形式存在者占90.37%,其次为硅酸铁。矿石角闪石含量为12.60%,其比磁化系数比赤铁矿略低,给矿石磁选分离带来很大困难。为了给该类矿石选矿工艺的深入研究提供基础资料,在矿石工艺矿物学研究的基础上,对其进行了高梯度磁选分离特性研究。在对高梯度磁选指标有显著影响的磨矿细度、聚磁介质尺寸和背景磁场强度等进行单因素条件试验的基础上,对影响高梯度磁选过程的设备转环转速、脉动冲次和冲洗水量进行3因素3水平正交试验,确定了最佳的高梯度磁选分离试验条件,即磨矿细度为-0.074 mm占85%、磁场强度为796 kA/m、磁介质为2 mm棒介质、转环转速为2 r/min、脉动冲次为400次/min、冲洗水量为25 L/min,在此条件下获得了精矿铁品位为44.12%、回收率为81.66%的指标。对最佳条件获得的产品进行分析表明:角闪石具有弱磁性,磁选时富集于磁性产品中,这是造成分选指标较差的主要原因;精矿中铁矿物单体解离度低、连生体多,说明高梯度磁选过程中机械夹杂严重,也是造成精矿铁品位低的重要原因。要实现该类矿石的开发利用,需进一步开展磁化焙烧或深度还原等方法的研究。  相似文献   

13.
胡义明  刘安平  徐望华 《金属矿山》2013,42(8):47-52,87
为了给梅山铁矿选矿厂降低铁精矿硅含量提供技术支持,在查明现场铁精矿SiO2含量高的原因基础上,采用4种方案进行了从现场浮硫尾矿获取SiO2含量<4%的铁精矿的选矿试验。结果表明,方案1(在现场选铁流程基础上增加弱磁精选并在高梯度磁选时采用低场强)、方案3(弱磁选-高梯度磁选-细筛分级-筛上再磨再选)和方案4(弱磁选-高梯度磁选-弱酸性正浮选)均可获得SiO2含量<4%的铁精矿,但方案1精矿铁品位相对较高而铁回收率相对较低,方案3和方案4则铁回收率相对较高而精矿铁品位相对较低。因此,究竟采用哪种方案,还应通过进一步的扩大试验乃至工业试验予以确定。  相似文献   

14.
选用立环脉动高梯度强磁机和新研制的新型捕收剂,东鞍山贫赤铁矿石经实验室试验,采用两段连续磨矿-强磁抛尾-混磁精再磨-正浮选工艺流程,可得到品位大于64%的精矿、铁回收率超过70%的指标。  相似文献   

15.
甘肃某微细粒嵌布的贫磁铁矿石因最终磨矿产品粒度极细,常规弱磁选指标较差。为改善选别效果、提高分选指标,对弱磁精选前的分散—选择性絮凝条件进行了研究,并借助激光粒度分析仪对分散—絮凝效果进行了测定。结果表明:矿石在磨矿1细度为-74μm占90.43%、磨矿2细度为-30μm占93.45%、弱磁精选1分散剂六偏磷酸钠用量为500 g/t,絮凝剂CMS用量为750 g/t,矿浆p H=11情况下,采用磨矿1—弱磁粗选—磨矿2—2次弱磁精选流程处理,最终获得铁品位为62.82%、铁回收率为79.12%的铁精矿,该精矿比常规弱磁精矿铁品位和铁回收率分别提高了1.28和5.08个百分点。分散—絮凝机理分析表明:在分散状态下,磁铁矿表面电荷负值较石英小,阴离子型絮凝剂CMS可通过氢键作用选择性吸附磁铁矿颗粒,显著增大磁铁矿微细颗粒的粒径,从而改善磁选效果、提高选矿指标。  相似文献   

16.
梅山铁矿石为磁铁矿-赤铁矿混合型铁矿石,铁品位为37.82%。现场采用不同的工艺分别对50~20、20~2、2~0.5 mm粒级进行预选,不仅预选尾矿铁品位较高,且50~20 mm粒级跳汰预选抛尾量非常低、耗水量大、生产指标不稳定、设备故障率也高。为了改善预选效果,进行了系统的选矿试验。结果表明,将现场50~20 mm粒级再破碎至20~0 mm并相应分级后,-0.5 mm粒级采用湿式筒式弱磁选+立环脉动高梯度强磁选,2~0.5 mm粒级采用筒式弱磁选+立环脉动高梯度粗粒强磁选,20~2 mm采用筒式中磁干选+辊式强磁干选,取得了铁品位为56.31%、铁回收率为3.65%的铁精矿,以及铁品位为40.81%、铁回收率为89.92%的预选精矿,预选尾矿铁品位16.75%、产率达11.59%,预选指标较好。  相似文献   

17.
云南某铁矿石为混合型铁矿石,由于铁矿物嵌布粒度微细而难以采用常规选矿方法有效选别。为此,对该矿石进行了煤基直接还原-弱磁选试验,结果表明,将原矿与作为还原剂的云南某褐煤和作为助熔剂的CaO按100∶20∶10的质量比混合,在1 200 ℃的温度下直接还原焙烧50 min,焙烧矿在一段和二段磨矿细度分别为-325目占81.34%和-325目占92.41%、一段和二段弱磁选场强分别为187.10和143.31 kA/m的条件下进行两段磨矿-弱磁选,可获得铁品位为91.20%、铁回收率为87.05%的直接还原铁精矿,从而为该难选铁矿石的开发利用提供了技术支持。  相似文献   

18.
戴惠新  赵志强 《金属矿山》2008,38(2):53-56,65
云南某锰铁共生矿石铁锰比较高,风化粉碎现象严重,呈粘土状,矿物嵌布粒度微细,属难选矿石,常规的强磁选、重选、浮选工艺对该矿石几乎没有分选效果。为此采用磁化还原焙烧-弱磁选选铁-选铁尾矿反浮选提锰工艺处理该矿石,获得了铁品位为55.50%、铁回收率为65.81%的铁精矿和锰品位为34.55%、锰回收率为78.47%的锰精矿,为类似难选锰铁共生矿石的分选提供了一种新的思路  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号