首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zn0.52Se0.48/Si Schottky diodes are fabricated by depositing zinc selenide (Zn0.52Se0.48) thin films onto Si(1 0 0) substrates by vacuum evaporation technique. Rutherford backscattering spectrometry (RBS) analysis shows that the deposited films are nearly stoichiometric in nature. X-ray diffractogram of the films reveals the preferential orientation of the films along (1 1 1) direction. Structural parameters such as crystallite size (D), dislocation density (δ), strain (ε), and the lattice parameter are calculated as 29.13 nm, 1.187 × 10−15 lin/m2, 1.354 × 10−3 lin−2 m−4 and 5.676 × 10−10 m respectively. From the IV measurements on the Zn0.52Se0.48/p-Si Schottky diodes, ideality and diode rectification factors are evaluated, as 1.749 (305 K) and 1.04 × 104 (305 K) respectively. The built-in potential, effective carrier concentration (NA) and barrier height were also evaluated from CV measurement, which are found to be 1.02 V, 5.907 × 1015 cm−3 and 1.359 eV respectively.  相似文献   

2.
The present work reports on the optimization of the electrical properties of Al/a-SiC:H Schottky diodes by means of thermal annealing of a-SiC:H thin films. Optical transmission experiments have shown that the optical properties of the films are affected by thermal annealing when Ta>600 °C, due to emission of hydrogen bonded to silicon. Although the electrical properties of Al/a-SiC:H Schottky diodes are invariant for Ta?400 °C, for higher Ta these properties are improved with the optimum result achieved at . At this annealing temperature the linear log I-V characteristics span about eight orders of magnitude and the ideality factor is 1.09±0.04, making these diodes very interesting for many potential applications. For higher Ta (>600 °C) the electrical properties of Al/a-SiC:H Schottky diodes deteriorate with complete degradation at . For temperatures up to 600 °C this behavior is attributed to relaxation of the strain in the amorphous network which is possibly combined with weak hydrogen emission for temperatures up to 600 °C, leading to an optimum material quality. For further increase of Ta (>600 °C) the observed deterioration of the electrical properties of Al/a-SiC:H Schottky diodes is due to the intensive emission of hydrogen atoms bonded to silicon that cause voids in the amorphous network. These results are also supported by the experimental values of the room temperature apparent barrier height of the Al/a-SiC:H junction ?bRT and its temperature coefficient γ.  相似文献   

3.
The authors report the UV photoresponse of an a-SiC/a-Si heterojunction p-i-n diode with the structure of glass/TCO (transparent conducting oxide, SnO2:F)/p-a-SiC:H/i-a-Si:H/n-a-Si:H/Al. The diode has been designed for a high-sensitivity and low-noise UV detector. The diode has its peak responsivity (0.254 A/W) and quantum efficiency (81.5%) at 385 nm. This structure possesses (1) the window effect by using the wide-bandgap a-SiC:H as the front layer (p-layer) and (2) the carrier confinement effect at the p-SiC:H/i-a-Si:H interface. Enhancements are proposed to raise UV response and suppress long-wave responsivity. The diode was designed to be operated under zero external bias to suppress the dark-current-induced noise. Results show a 200% higher UV sensitivity than a GaAsP Schottky photodiode in the 200-400-nm wavelength region  相似文献   

4.
In order to improve the electroluminescence (EL) characteristics of the hydrogenated amorphous silicon carbide (a-SiC:H) p-i-n thin-film light-emitting diode (TFLED), a barrier layer (BL) was inserted at its p-i interface to enhance the hole injection efficiency under forward-bias operation. The a-SiC:H TFLED's with various optical gaps of BL had been fabricated and characterized. In addition, a composition-graded n+-layer was used to reduce its series and contact resistances to the Al electrode and hence the EL threshold voltage (Vth) of an a-SiC:H BL TFLED. The highest obtainable brightness of an a-SiC:H BL TFLED was 342 cd/m2 at an injection current density of 600 mA/cm2 and the lowest EL V th achievable was 6.0 V. The current-conduction mechanism of an a-SiC:H BL TFLED had also been investigated. Within the lower applied-bias region, it showed an ohmic current, while within the higher applied-bias region, a space-charge-limited current (SCLC) was observed  相似文献   

5.
We present a new ohmic contact material NiSi2 to n-type 6H-SiC with a low specific contact resistance. NiSi2 films are prepared by annealing the Ni and Si films separately deposited on (0 0 0 1)-oriented 6H-SiC substrates with carrier concentrations (n) ranging from 5.8×1016 to 2.5×1019 cm−3. The deposited films are annealed at 900 °C for 10 min in a flow of Ar gas containing 5 vol.% H2 gas. The specific contact resistance of NiSi2 contact exponentially decreases with increasing carrier concentrations of substrates. NiSi2 contacts formed on the substrates with n=2.5×1019 cm−3 show a relatively low specific contact resistance with 3.6×10−6 Ω cm2. Schottky barrier height of NiSi2 to n-type 6H-SiC is estimated to be 0.40±0.02 eV using a theoretical relationship for the carrier concentration dependence of the specific contact resistance.  相似文献   

6.
28Si+ implantation into Mg-doped GaN, followed by thermal annealing in N2 was performed to achieve n+-GaN layers. The carrier concentrations of the films changed from 3×1017 (p-type) to 5×1019 cm−3 (n-type) when the Si-implanted p-type GaN was properly annealed. Specific contact resistance (ρc) of Ti/Al/Pt/Au Ohmic contact to n-GaN, formed by 28Si+ implantation into p-type GaN, was also evaluated by transmission line model. It was found that we could achieve a ρc value as low as 1.5×10−6 Ω cm2 when the metal contact was alloyed in N2 ambience at 600 °C. Si-implanted GaN p–n junction light-emitting diodes were also fabricated. Electroluminescence measurements showed that two emission peaks at around 385 and 420 nm were observed, which could be attributed to the near band-edge transition and donor-to-acceptor transition, respectively.  相似文献   

7.
Currently, large-area 3C–SiC films are available from a number of sources and it is imperative that stable high temperature contacts be developed for high power devices on these films. By comparing the existing data in the literature, we demonstrate that the contact behavior on each of the different polytypes of SiC will vary significantly. In particular, we demonstrate this for 6H–SiC and 3C–SiC. The interface slope parameter, S, which is a measure of the Fermi-level pinning in each system varies between 0.4–0.5 on 6H–SiC, while it is 0.6 on 3C–SiC. This implies that the barrier heights of contacts to 3C–SiC will vary more significantly with the choice of metal than for 6H–SiC. Aluminum, nickel and tungsten were deposited on 3C–SiC films and their specific contact resistance measured using the circular TLM method. High temperature measurements (up to 400°C) were performed to determine the behavior of these contacts at operational temperatures. Aluminum was used primarily as a baseline for comparison since it melts at 660°C and cannot be used for very high temperature contacts. The specific contact resistance (ρc) for nickel at room temperature was 5×10−4 Ω cm2, but increased with temperature to a value of 1.5×10−3 Ω cm2 at 400°C. Tungsten had a higher room temperature ρc of 2×10−3 Ω cm2, which remained relatively constant with increasing temperature up to 400°C. This is related to the fact that there is hardly any reaction between tungsten and silicon carbide even up to 900°C, whereas nickel almost completely reacts with SiC by that temperature. Contact resistance measurements were also performed on samples that were annealed at 500°C.  相似文献   

8.
Mo, Pt, Pt/Mo and Pt/Ti thin films have been deposited onto Si and SiO2 substrates by RF sputtering and annealed in the YBa2Cu3O7−δ (YBCO) growth conditions. The effect of annealing on the sheet resistance of unpatterned layers was measured. A Pt-based multilayered metallization for the PMOS devices was proposed and tested for a compatible monolithic integration of semiconducting devices and YBCO sensors on the same silicon substrate. The best results were obtained with a Pt/Ti/Mo-silicide structure showing 0.472 Ω interconnect sheet resistivity and 2×10−4 Ω cm2 specific contact resistivity after annealing for 60 min at 700 °C in 0.5 mbar O2 pressure.  相似文献   

9.
The authors report a detailed investigation of correlations between Urbach energies from photothermal deflection spectroscopy and Raman half-widths of transverse optic (TO)-like Si-Si modes as a measure of silicon matrix disorder in glow-discharge amorphous hydrogenated silicon (a-Si:H) and a-SiGe:H, as well as in glow-discharge and sputtered a-SiC:H and a-SiN:H. A corresponding decrease in TO full width at half-maximum (FWHM) and Urbach energy E0 for soft deposition techniques yields bond angle distributions as narrow as 8.5° for the best a-Si:H films. Even at the lowest levels of nitrogen incorporation, simultaneous increases in E0 and TO-like half-widths indicate that lattice distortions occur due to threefold coordination of nitrogen in the a-Si:H matrix. In contrast, no deviation of silicon TO-FWHM could be detected in a-SiC:H of up to 35 at.% of carbon content, whereas Urbach edges broaden in a well-known manner that is interpreted in terms of -CH3 incorporation into the amorphous network. Diborane doping and sputter deposition, however, give rise to lattice distortions in a-SiC:H, which reflects changes in the carbon coordination  相似文献   

10.
Reactively sputtered amorphous Ta36Si14N50 thin films are investigated as diffusion barriers to improve the thermal stability of contacts to electronic devices, specifically between Al overlayers and Si substrates. Electrical measurements on Schottky diodes and on shallow n +-p junction diodes are used to evaluate the thermal stability of the (Si)/W48Si20N32/Ta36Si 14N50/Al metallization. The W48Si20N32 contacting layer is added to raise the Schottky barrier height on n-type Si. It is shown that a 100-nm-thick Ta36Si14N50 layer effectively prevents the intermixing between Al and Si. With this barrier layer, both shallow junctions and Schottky diodes are electrically stable up to 700°C for 20 min (above the Al melting point of 660°C ), which makes this material the best thin-film diffusion barrier on record  相似文献   

11.
In this paper, we report the first results obtained for pyroelectric LiTaO3 thin films prepared on silicon substrates by electrostatic spray pyrolysis (ESP), a simple, low cost and efficient technique not widely used for LiTaO3 deposition, using lithium acetylacetonate and tantalum ethoxide in a mixture of methanol. The effect of the growth and annealing temperature on the structural and optical properties has been investigated. X-ray diffraction measurements have shown that LiTaO3 thin films became preferentially oriented in the (0,1,2) plane after annealing treatment in an oxygen environment using the rapid thermal processing. On the other hand, a thermal stress's modeling is performed to observe the effect of growth temperature on the as-deposited films and the substrates. The SEM images have shown that the film heat-treated at 600 °C became more homogeneous and smoother than that before annealing. The optical phonon modes of the LiTaO3 thin films have been also investigated using infrared reflectivity (FTIR) and Raman spectroscopy.  相似文献   

12.
The properties of different rectifying metallizations (Al, Ti/Pt, WNx) on GaAs have been investigated for various surface preparation procedures. In particular, in situ hydrogen plasma treatments were used to remove residual surface contamination (mainly O and C) and a nitrogen plasma to grow a thin mixed nitride layer. Al and Ti/Pt Schottky diodes with an ideality factor very close to 1, but with reduced barrier height, were found after the H2 plasma as a consequence of H diffusion into GaAs. The Schottky barrier height was further reduced if a H2 + N2 plasma was performed. The N content in the sputtering environment during the WNx deposition affects the diode properties of plasma-treated WNx contacts. By increasing the N2 partial pressure, the diode barrier height is reduced, probably due to nitridization of the GaAs surface. Such differences disappear after annealing the diodes in arsine overpressure at 800°C. WNx contacts deposited under different conditions on H2 plasma treated substrates also show a similar Schottky barrier height after such annealing.  相似文献   

13.
n+-SnO2/a-SiC/metal photodiodes with voltage-controlled photosensitivity have been realized by using both carbon-rich and silicon-rich a-SiC alloys. Carbon-rich devices show a response peak located at 530 nm independent of the applied voltage, which in turn only affects the peak height. At variance, in silicon-rich structures the response peak is located at 480, 510, and 570 nm when the applied voltage is -4, 0, and +4 V, respectively, with corresponding quantum yield values of 17, 3, and 25%. For explaining the observed behavior we present a simple model of n+-SnO2/a-SiC/metal diodes, which takes into account light-induced modulation of n+-SnO2/a-SiC barrier height, primary photocurrent generation and photoconductivity effects  相似文献   

14.
15.
Deposition and electrical properties of high dielectric constant (high-k) ultrathin ZrO2 films on tensilely strained silicon (strained-Si) substrate are reported. ZrO2 thin films have been deposited using a microwave plasma enhanced chemical vapor deposition technique at a low temperature (150 °C). Metal insulator semiconductor (MIS) structures are used for high frequency capacitance–voltage (CV), current–voltage (IV), and conductance–voltage (GV) characterization. Using MIS capacitor structures, the reliability and the leakage current characteristics have been studied both at room and high temperature. Schottky conduction mechanism is found to dominate the current conduction at a high temperature. Observed good electrical and reliability properties suggest the suitability of deposited ZrO2 thin films as an alternative as gate dielectrics. Compatibility of ZrO2 as a gate dielectric on strained-Si is shown.  相似文献   

16.
A new 4H-SiC trench-gate MOSFET structure with epitaxial buried channel for accumulation-mode operation, has been designed and fabricated, aiming at improving channel electron mobility. Coupled with improved fabrication processes, the MOSFET structure eliminates the need of high dose N+ source implantation. High dose N+ implantation requires high-temperature (1550 °C) activation annealing and tends to cause substantial surface roughness, which degrades MOSFET threshold voltage stability and gate oxide reliability. The buried channel is implemented without epitaxial regrowth or accumulation channel implantation. Fabricated MOSFETs subject to ohmic contact rapid thermal annealing at 850 °C for 5 min exhibit a high peak field-effect mobility (μFE) of 95 cm2/V s at room temperature (25 °C) and 255 cm2/V s at 200 °C with stable normally-off operation from 25 °C to 200 °C. The dependence of channel mobility and threshold voltage on the buried channel depth is investigated and the optimum range of channel depth is reported.  相似文献   

17.
Ten and twenty layers of self-assembled Ge QDs with 44 and 59-nm-thick Si barrier were grown on high resistivity (1 0 0) p-type Si substrates by rapid thermal chemical vapor deposition followed by Mn ion implantation and post-annealing. A presence of ferromagnetic structure was confirmed in the insulating GeMn diluted magnetic quantum dots (DMQD) and semiconducting GeMn DMQD. The DMQD materials were found to be homogeneous, and to exhibit p-type conductivity and ferromagnetic ordering with a Curie temperature, TC = 350 and 230 K. The X-ray diffraction (XRD) data show that there is a phase separation of Mn5Ge3 from MnGe nanostructure. Temperature dependent electrical resistivity in semiconducting DMQD material indicates that manganese introduces two acceptor levels in germanium at 0.14 eV from the valence band and 0.41 eV from the conduction band implying Mn substituting Ge. Therefore, it is likely that the ferromagnetic exchange coupling of DMQD material with TC = 230 K is hole-mediated due to formation of polarons and the ferromagnetism in sample with TC > 300 K is due to Mn5Ge3 phase.  相似文献   

18.
Hydrogenated amorphous silicon carbon (a-SiC:H) films were deposited by hot wire chemical vapor deposition. The evolution of microscopic properties like network bonding, disorder, density and chemical composition are studied as a function of H2 dilution. The sp2 and sp3 carbon clusters, hydrogen content and the density of the material has significant effect on the dielectric properties like the leakage current of M/a-SiC:H/〈Si〉 MIS structures made with both Cu and Al metal electrode. A higher leakage current is observed in the case of Cu electrode. These changes are important for its applicability as a low dielectric constant barrier material in microelectronic devices.  相似文献   

19.
GaN MIS diodes were demonstrated utilizing AlN and Ga2O3(Gd2O3) as insulators. A 345 Å of AlN was grown on the MOCVD grown n-GaN in a MOMBE system using trimethylamine alane as Al precursor and nitrogen generated from a SVT RF N2 plasma. For the Ga2O3(Gd2O3) growth, a multi-MBE chamber was used and a 195 Å oxide was E-beam evaporated from a single crystal source of Ga5Gd3O12. The forward breakdown voltage of AlN and Ga2O3(Gd2O3) diodes are 5 and 6 V, respectively, which are significantly improved over 1.2 V from that of a Schottky contact. From the C–V measurements, both kinds of diodes showed good charge modulation from accumulation to depletion at different frequencies. The insulator/GaN interface roughness and the thickness of the insulator were measured with X-ray reflectivity.  相似文献   

20.
Growth of silver films was studied by supercritical fluid deposition (SCFD) using H2 and acetone as reducing agents for (1,5-cyclooctadiene)(hexafluoroacetylacetonato)silver(I) in supercritical CO2 (scCO2). H2 reduction did not yield continuous Ag films, whereas continuous films were deposited on Ru substrates by acetone-assisted reduction of 0.006–0.03 mol% precursor in the temperature range of 150–250 °C. Surface qualities of the Ag films were effectively improved by decreasing water content in acetone reagent, as well as reducing acetone and precursor concentrations in scCO2. Ultimately, a 50 nm-thick film with shiny surface was obtained in optimized conditions. A possible mechanism for acetone reduction of Ag precursor on Ru surface was also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号