首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
可伸缩的增量连续k近邻查询处理   总被引:7,自引:0,他引:7  
廖巍  熊伟  王钧  景宁  钟志农 《软件学报》2007,18(2):268-278
针对基于TPR树(time-parameterized R-tree)索引的大量并发CKNN(continuous k-nearest neighbor)查询处理,提出了一种可伸缩的增量连续k近邻查询处理(scalable processing of incremental continuous k-nearest neighbor queries,简称SI-CNN)框架,通过引入搜索区域进行预裁剪以减少查询更新所需要的TPR树节点访问代价,并引入了增量结果表以保存候选对象,批量地更新查询结果集,具有良好的可伸缩性.基于SI-CNN框架提出了一种增量更新的SI-CNN查询处理算法,能够基于上次查询结果增量的更新查询,支持查询集合中加入或删除查询和移动对象数据集的插入、删除等动态更新操作.实验结果与分析表明,基于SI-CNN框架的SI-CNN算法可以很好地支持大量并发的CKNN查询处理,具有良好的实用价值.  相似文献   

2.
移动对象连续k近邻(CKNN)查询是指给定一个连续移动的对象集合,对于任意一个k近邻查询q,实时计算查询qk近邻并在查询有效时间内对查询结果进行实时更新.现实生活中,交通出行、社交网络、电子商务等领域许多基于位置的应用服务都涉及移动对象连续k近邻查询这一基础问题.已有研究工作解决连续k近邻查询问题时,大多需要通过多次迭代确定一个包含k近邻的查询范围,而每次迭代需要根据移动对象的位置计算当前查询范围内移动对象的数量,整个迭代过程的计算代价占查询代价的很大部分.为此,提出了一种基于网络索引和混合高斯函数移动对象分布密度的双重索引结构(grid GMM index,GGI),并设计了移动对象连续k近邻增量查询算法(incremental search for continuous k nearest neighbors,IS-CKNN).GGI索引结构的底层采用网格索引对海量移动对象进行维护,上层构建混合高斯模型模拟移动对象在二维空间中的分布.对于给定的k近邻查询q,IS-CKNN算法能够基于混合高斯模型直接确定一个包含qk近邻的查询区域,减少了已有算法求解该区域的多次迭代过程;当移动对象和查询q位置发生变化时,进一步提出一种高效的增量查询策略,能够最大限度地利用已有查询结果减少当前查询的计算量.最后,在滴滴成都网约车数据集以及两个模拟数据集上进行大量实验,充分验证了算法的性能.  相似文献   

3.
Nearest and reverse nearest neighbor queries for moving objects   总被引:4,自引:0,他引:4  
With the continued proliferation of wireless communications and advances in positioning technologies, algorithms for efficiently answering queries about large populations of moving objects are gaining interest. This paper proposes algorithms for k nearest and reverse k nearest neighbor queries on the current and anticipated future positions of points moving continuously in the plane. The former type of query returns k objects nearest to a query object for each time point during a time interval, while the latter returns the objects that have a specified query object as one of their k closest neighbors, again for each time point during a time interval. In addition, algorithms for so-called persistent and continuous variants of these queries are provided. The algorithms are based on the indexing of object positions represented as linear functions of time. The results of empirical performance experiments are reported.  相似文献   

4.
谷峪  于晓楠  于戈 《软件学报》2014,25(8):1806-1816
随着智能移动设备和无线定位技术的飞速发展,使用基于位置服务应用的用户越来越多.特别地,不同于传统的针对固定位置的快照查询,移动的用户往往基于移动轨迹发出连续的查询.在真实和虚拟的空间环境中,障碍物的影响都是广泛存在的,障碍空间内的查询处理技术得到了越来越多的关注,其中,障碍空间内的连续反k近邻查询处理有着重要的应用.对障碍空间中的连续反k近邻查询问题进行了定义和系统的研究,通过定义控制点和分割点,提出了针对该问题的处理框架.进一步地,提出了一系列的过滤和求精算法,包括剪枝数据集、获取障碍物、剪枝和计算控制点和更新结果集等处理策略.基于多种数据集对所提出的算法进行了实验评估.与针对每个数据点进行k 近邻计算的基本方法相比,这些方法可以大幅度提高查询处理的CPU 和I/O 效率.  相似文献   

5.
In multimedia databases, k-nearest neighbor queries are popular and frequently contain non-spatial predicates. Among the available techniques for such queries, the incremental nearest neighbor algorithm proposed by Hjaltason and Samet is known as the most useful algorithm [16]. The reason is that if k > k neighbors are needed, it can provide the next neighbor for the upper operator without restarting the query from scratch. However, the R-tree in their algorithm has no facility capable of partially pruning tuple candidates that will turn out not to satisfy the remaining predicates, leading their algorithm to inefficiency. In this paper, we propose an RS-tree-based incremental nearest neighbor algorithm complementary to their algorithm. The RS-tree used in our algorithm is a hybrid of the R-tree and the S-tree, as its buddy tree, based on the hierarchical signature file. Experimental results show that our RS-tree enhances the performance of Hjaltason and Samet's algorithm.  相似文献   

6.
Traditional spatial queries return, for a given query object q, all database objects that satisfy a given predicate, such as epsilon range and k-nearest neighbors. This paper defines and studies inverse spatial queries, which, given a subset of database objects Q and a query predicate, return all objects which, if used as query objects with the predicate, contain Q in their result. We first show a straightforward solution for answering inverse spatial queries for any query predicate. Then, we propose a filter-and-refinement framework that can be used to improve efficiency. We show how to apply this framework on a variety of inverse queries, using appropriate space pruning strategies. In particular, we propose solutions for inverse epsilon range queries, inverse k-nearest neighbor queries, and inverse skyline queries. Furthermore, we show how to relax the definition of inverse queries in order to ensure non-empty result sets. Our experiments show that our framework is significantly more efficient than naive approaches.  相似文献   

7.
卢秉亮  刘娜 《计算机应用》2011,31(11):3078-3083
扩展了一种支持路网中移动对象的位置相关查询框架的功能,利用存在磁盘上的R树来存储网络连通性和一种基于内存的网格结构来维持移动对象的位置更新,提出了基于范围查询(MNDR)的快照K近邻查询算法(SKNN),对空间中的任意一条边,分析可能受影响的最大数量和最小数量的网格单元格,说明用于快照范围查询处理的搜索空间的最大范围,预估包含查询结果的子空间,使用这个子空间作为范围调用MNDR来有效地计算路网中查询点的KNN POI,降低I/O成本,缩短查询时间。通过实验对比,当规模扩展到数十万的移动对象时,SKNN比种有效查询处理空间网络数据的预计算方法S-GRID有更好大的系统吞吐量。  相似文献   

8.
This article presents a novel type of queries in spatial databases, called the direction-aware bichromatic reverse k nearest neighbor(DBRkNN) queries, which extend the bichromatic reverse nearest neighbor queries. Given two disjoint sets, P and S, of spatial objects, and a query object q in S, the DBRkNN query returns a subset P′ of P such that k nearest neighbors of each object in P′ include q and each object in P′ has a direction toward q within a pre-defined distance. We formally define the DBRkNN query, and then propose an efficient algorithm, called DART, for processing the DBRkNN query. Our method utilizes a grid-based index to cluster the spatial objects, and the B+-tree to index the direction angle. We adopt a filter-refinement framework that is widely used in many algorithms for reverse nearest neighbor queries. In the filtering step, DART eliminates all the objects that are away from the query object more than a pre-defined distance, or have an invalid direction angle. In the refinement step, remaining objects are verified whether the query object is actually one of the k nearest neighbors of them. As a major extension of DART, we also present an improved algorithm, called DART+, for DBRkNN queries. From extensive experiments with several datasets, we show that DART outperforms an R-tree-based naive algorithm in both indexing time and query processing time. In addition, our extension algorithm, DART+, also shows significantly better performance than DART.  相似文献   

9.
With the exponential growth of moving objects data to the Gigabyte range, it has become critical to develop effective techniques for indexing, updating, and querying these massive data sets. To meet the high update rate as well as low query response time requirements of moving object applications, this paper takes a novel approach in moving object indexing. In our approach, we do not require a sophisticated index structure that needs to be adjusted for each incoming update. Rather, we construct conceptually simple short-lived index images that we only keep for a very short period of time (sub-seconds) in main memory. As a consequence, the resulting technique MOVIES supports at the same time high query rates and high update rates, trading this property for query result staleness. Moreover, MOVIES is the first main memory method supporting time-parameterized predictive queries. To support this feature, we present two algorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surprising result that a predictive indexing approach—considered state-of-the-art in an external-memory scenario—does not scale well in a main memory environment. In fact, our results show that MOVIES outperforms state-of-the-art moving object indexes such as a main-memory adapted B x -tree by orders of magnitude w.r.t. update rates and query rates. In our experimental evaluation, we index the complete road network of Germany consisting of 40,000,000 road segments and 38,000,000 nodes. We scale our workload up to 100,000,000 moving objects, 58,000,000 updates per second and 10,000 queries per second, a scenario at a scale unmatched by any previous work.  相似文献   

10.
Processing moving queries over moving objects using motion-adaptive indexes   总被引:2,自引:0,他引:2  
This paper describes a motion-adaptive indexing scheme for efficient evaluation of moving continual queries (MCQs) over moving objects. It uses the concept of motion-sensitive bounding boxes (MSBs) to model moving objects and moving queries. These bounding boxes automatically adapt their sizes to the dynamic motion behaviors of individual objects. Instead of indexing frequently changing object positions, we index less frequently changing object and query MSBs, where updates to the bounding boxes are needed only when objects and queries move across the boundaries of their boxes. This helps decrease the number of updates to the indexes. More importantly, we use predictive query results to optimistically precalculate query results, decreasing the number of searches on the indexes. Motion-sensitive bounding boxes are used to incrementally update the predictive query results. Furthermore, we introduce the concepts of guaranteed safe radius and optimistic safe radius to extend our motion-adaptive indexing scheme to evaluating moving continual k-nearest neighbor (kNN) queries. Our experiments show that the proposed motion-adaptive indexing scheme is efficient for the evaluation of both moving continual range queries and moving continual kNN queries.  相似文献   

11.
Recent development of wireless communication technologies and the popularity of smart phones are making location-based services (LBS) popular. However, requesting queries to LBS servers with users’ exact locations may threat the privacy of users. Therefore, there have been many researches on generating a cloaked query region for user privacy protection. Consequently, an effcient query processing algorithm for a query region is required. So, in this paper, we propose k-nearest neighbor query (k-NN) processing algorithms for a query region in road networks. To effciently retrieve k-NN points of interest (POIs), we make use of the Island index. We also propose a method that generates an adaptive Island index to improve the query processing performance and storage usage. Finally, we show by our performance analysis that our k-NN query processing algorithms outperform the existing k-Range Nearest Neighbor (kRNN) algorithm in terms of network expansion cost and query processing time.  相似文献   

12.
The database community has devoted extensive amount of efforts to indexing and querying temporal data in the past decades. However, insufficient amount of attention has been paid to temporal ranking queries. More precisely, given any time instance t, the query asks for the top-k objects at time t with respect to some score attribute. Some generic indexing structures based on R-trees do support ranking queries on temporal data, but as they are not tailored for such queries, the performance is far from satisfactory. We present the Seb-tree, a simple indexing scheme that supports temporal ranking queries much more efficiently. The Seb-tree answers a top-k query for any time instance t in the optimal number of I/Os in expectation, namely, O(logB \fracNB+\frackB){O\left({\rm log}_B\,\frac{N}{B}+\frac{k}{B}\right)} I/Os, where N is the size of the data set and B is the disk block size. The index has near-linear size (for constant and reasonable k max values, where k max is the maximum value for the possible values of the query parameter k), can be constructed in near-linear time, and also supports insertions and deletions without affecting its query performance guarantee. Most of all, the Seb-tree is especially appealing in practice due to its simplicity as it uses the B-tree as the only building block. Extensive experiments on a number of large data sets, show that the Seb-tree is more than an order of magnitude faster than the R-tree based indexes for temporal ranking queries.  相似文献   

13.
移动对象的动态反向k最近邻研究   总被引:1,自引:1,他引:0       下载免费PDF全文
反向最近邻查询是空间数据库中最重要的算法之一。传统的反向最近邻查询方法主要是针对静态对象的查询,随着无线通讯和定位技术的快速发展,移动对象发出的查询请求成为新的研究热点。该文将TPR-tree作为算法的索引结构,并提出了基于矩形框的对角线的修剪策略,将半平面修剪策略进行改进,给出了移动对象的动态反向k最近邻的查询方案。  相似文献   

14.
Continuous reverse k nearest neighbor (CRkNN) monitoring in road networks has recently received increasing attentions. However, there is still a lack of efficient CRkNN algorithms in road networks up to now. In road networks, moving query objects and data objects are restricted by the connectivity of the road network and both the object–query distance and object–object distance updates affect the result of CRkNN queries. In this paper, we present a novel algorithm for continuous and incremental evaluation of CRkNN queries in road networks. Our method is based on a novel data structure called dual layer multiway tree (DLM tree) we proposed to represent the whole monitoring region of a CRkNN query q. We propose several lemmas to reduce the monitoring region of q and the number of candidate objects as much as possible. Moreover, by associating a variable NN_count with each candidate object, we can simplify the monitoring of candidate objects. There are a large number of objects roaming in a road network and many of them are irrelevant to a specific CRkNN query of a query object q. To minimize the processing extension, for a road in the network, we give an IQL list and an IQCL list to specify the set of query objects and data objects whose location updates should be maintained for CRkNN processing of query objects. Our CRkNN method consists of two phase: the initial result generating phase and incremental maintenance phase. In each phase, algorithms with high performance are proposed to make our CRkNN method more efficient. Extensive simulation experiments are conducted and the result shows that our proposed approach is efficient and scalable in processing CRkNN queries in road networks.  相似文献   

15.
Recent research has focused on Continuous K Nearest Neighbor (CKNN) queries in road networks, where the queries and the data objects are moving. Most existing approaches assume the fixed velocity of moving objects. The release of fixed moving velocity makes the query process slowly due to the significant repetitive query cost. In this paper, we study CKNN queries over moving objects with uncertain velocity in road networks. A Distance Interval Model (DIM) is designed to calculate the minimal and maximal road network distances between moving objects and query point. Furthermore, we propose a novel Possibility-based Vague KNN (PVKNN) algorithm to process the query efficiently, which determines the CKNN query results with possibility within each division time subinterval of given time interval by applying the vague set theory. In the PVKNN algorithm, the query efficiency can be improved significantly with the pruning, distilling and possibility-ranking phases. With these phases, the objects candidates are scaled down and the given time interval is divided into subintervals to reduce the repetitive query cost. In addition, an index structure TPRuv-Tree is designed to efficiently index moving objects with uncertain velocity in road network by involving edge connection and moving objects information. Experiments with simulation and comparison show that significant improvement in the performance of efficiency can be achieved with our proposed algorithms.  相似文献   

16.
刘德高  李晓宇 《计算机应用》2013,33(7):1964-1968
针对增量式监测算法(IMA)的冗余搜索问题,提出一种基于IMA改进的移动对象连续k近邻(Continuous k Nearest Neighbor, CkNN)查询处理新算法。采用增量式查询处理机制;利用距离相近的查询其查询结果大部分相同这一特性,在以查询点为中心进行网络扩展之前,首先执行一个预处理过程,分析相近的其他查询的扩展树,并重用其中的有效部分,从而避免了对道路网的盲目扩展;且在节点的网络扩展中,通过应用具有相同扩展方向的其他查询的扩展结果,不仅减少了对道路网的重复扩展,还节省了计算代价。实验结果表明,所提算法同传统算法相比较, 缩短了查询响应时间,提高了运行效率,并且适用于不同类型的k近邻查询。  相似文献   

17.
刘义  景宁  陈荦  熊伟 《软件学报》2013,24(8):1836-1851
针对大规模空间数据的高性能k-近邻连接查询处理,研究了MapReduce框架下基于R-树索引的k-近邻连接查询处理。首先利用无依赖并行和串行同步计算的形式化定义抽象了MapReduce并行编程模型,基于此并行计算模型抽象,分别提出了 R-树索引快速构建算法和基于 R-树的并行 k-近邻连接算法。在索引构建过程中,提出一种采样算法以快速确立空间划分函数,使得索引构建符合无依赖并行和串行同步计算抽象,在MapReduce框架下非常容易进行表达。在k-近邻连接查询过程中,基于构建的分布式R-树索引,引入k-近邻扩展框限定查询范围并进行数据划分,然后利用 R-树索引进行 k-近邻连接查询,提高了查询效率。从理论上分析了所提出算法的通信和计算代价。实验与分析结果表明,该算法在真实数据集的查询上具有良好的效率和可扩展性能,可以很好地支持大规模空间数据的k-近邻连接查询处理,具有良好的实用价值。  相似文献   

18.
Continuous aggregate nearest neighbor queries   总被引:1,自引:0,他引:1  
This paper addresses the problem of continuous aggregate nearest-neighbor (CANN) queries for moving objects in spatio-temporal data stream management systems. A CANN query specifies a set of landmarks, an integer k, and an aggregate distance function f (e.g., min, max, or sum), where f computes the aggregate distance between a moving object and each of the landmarks. The answer to this continuous query is the set of k moving objects that have the smallest aggregate distance f. A CANN query may also be viewed as a combined set of nearest neighbor queries. We introduce several algorithms to continuously and incrementally answer CANN queries. Extensive experimentation shows that the proposed operators outperform the state-of-the-art algorithms by up to a factor of 3 and incur low memory overhead.  相似文献   

19.
The growing need for location based services motivates the moving k nearest neighbor query (MkNN), which requires to find the k nearest neighbors of a moving query point continuously. In most existing solutions, data objects are abstracted as points. However, lots of real-world data objects, such as roads, rivers or pipelines, should be reasonably modeled as line segments or polyline segments. In this paper, we present LV*-Diagram to handle MkNN queries over line segment data objects. LV*-Diagram dynamically constructs a safe region. The query results remain unchanged if the query point is in the safe region, and hence, the computation cost of the server is greatly reduced. Experimental results show that our approach significantly outperforms the baseline method w.r.t. CPU load, I/O, and communication costs.  相似文献   

20.
随着移动定位技术和无线通讯技术发展,移动对象的应用领域越来越广阔.位置随时间而变化的移动对象产生的时空数据具有规模大、多维性、结构复杂和关系复杂等特点.由于移动对象的运动轨迹大多被限定在特定的交通网络中,因此基于路网的移动对象索引成为时空数据索引研究的一个重要应用分支.目前,针对移动对象历史数据的区域查询优化的研究重点...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号