首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Time‐accurate blade pressure distributions on a rotating H‐Darrieus wind turbine at representative tip speed ratios during start‐up are presented here, which allow blade dynamic stall and laminar separation bubbles to be observed clearly and which provide a rare experimental demonstration of the flow curvature effect inherent in H‐Darrieus turbine operation. The convection of a dynamic stall vortex along the blade surface at high reduced frequency has also been clearly identified. This study provides new information of the complex aerodynamics of the vertical axis wind turbines (VAWTs) and provides unique experimental data to validate the transient blade static surface pressure distribution predicted by CFD models. To the best of the authors' knowledge, this is the first time that the instantaneous pressure variation around the blade has been measured and recorded directly for an H‐Darrieus wind turbine.  相似文献   

2.
The accurate prediction of the aerodynamics and performance of vertical‐axis wind turbines is essential if their design is to be improved but poses a significant challenge to numerical simulation tools. The cyclic motion of the blades induces large variations in the angle of attack of the blades that can manifest as dynamic stall. In addition, predicting the interaction between the blades and the wake developed by the rotor requires a high‐fidelity representation of the vortical structures within the flow field in which the turbine operates. The aerodynamic performance and wake dynamics of a Darrieus‐type vertical‐axis wind turbine consisting of two straight blades is simulated using Brown's Vorticity Transport Model. The predicted variation with azimuth of the normal and tangential force on the turbine blades compares well with experimental measurements. The interaction between the blades and the vortices that are shed and trailed in previous revolutions of the turbine is shown to have a significant effect on the distribution of aerodynamic loading on the blades. Furthermore, it is suggested that the disagreement between experimental and numerical data that has been presented in previous studies arises because the blade–vortex interactions on the rotor were not modelled with sufficient fidelity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
F. Zou  V. A. Riziotis  S. G. Voutsinas  J. Wang 《风能》2015,18(12):2145-2169
Vortex‐induced and stall‐induced vibrations of a 2D elastically mounted airfoil at high angles of attack in the vicinity of 90° are investigated using a vortex type model. Such conditions are encountered in parked or idling operation at extreme yaw angles provoked by control system failures. At very high angles of attack, massive flow separation takes place over the entire blade span, and vortex shedding evolves downstream of the blade giving rise to periodically varying loads at frequencies corresponding to the Strouhal number of the vortices shed in the wake. As a result, vortex‐induced vibrations may occur when the shedding frequency matches the natural frequency of the blade. A vortex type model formulated on the basis of the ‘double wake’ concept is employed for the modelling of the stalled flow past a 2D airfoil. By tuning the core size of the vortex particles in the wake, the model predictions are successfully validated against averaged 2D measurements on a DU‐96‐W‐180 airfoil at high angles of attack. In order to assess the energy fed to the airfoil by the aerodynamic loads, the behaviour under imposed sinusoidal edgewise motions is analysed for various oscillation frequencies and amplitudes. Moreover, stall‐induced and vortex‐induced vibrations of an elastically mounted airfoil section are assessed. The vortex model predicts higher aeroelastic damping as compared with that obtained using steady‐state aerodynamics. Excessive combined vortex‐induced and stall‐induced edgewise vibrations are obtained beyond the wind speed of 30 m s?1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Rotating stall around a small-scale horizontal axis wind turbine was experimentally studied to characterize and assess smart rotor control by plasma actuators. Phase-locked Particle Image Velocimetry was used to map the flow over the rotor blade suction surface at numerous radial stations at a range of tip-speed-ratios. Flow separation occurred from the inboard of the blade and spread radially outwards as the tip-speed-ratio reduced. Plasma actuators placed along the span that produced a chord-wise body force had very little effect on the flow separation, even when operated in pulsed forcing mode. In contrast, plasma actuators along the blade chord that produced a body force into the radial directions (plasma vortex generators) successfully mitigated rotating stall. Torque due to aerodynamic drag was reduced by up to 22% at the lowest tip-speed-ratio of 3.7, suppressing stall over the outboard 50% of the blade. This was due to quasi-two-dimensional flow reattachment in the outboard region, and shifting of a fully stalled zone towards the hub in the inboard region because the plasma-induced body force counteracted the Coriolis-induced radial flow. This can significantly increase the turbine power output in unfavourable wind conditions and during start-up.  相似文献   

5.
Moutaz Elgammi  Tonio Sant 《风能》2017,20(9):1645-1663
Stall delay is a complicated phenomenon that has gained for many years the attention of industry and academics in the fields of helicopter and wind turbine aerodynamics. Since most of the potential flow theories still rely on the use of 2D aerofoil data for simulating loads on a rotating blade, less degree of accuracy is expected because of 3D rotational effects. In this work, a new model for correcting the 2D steady aerodynamic data for 3D effects is presented. The model can reduce the uncertainty in the blade design process and, subsequently, make wind turbines more cost‐effective. This model combines the stall delay model of Corrigan and Schillings, a modified version of an inviscid stall delay model, a new modification factor to account for the effect of the angle of attack changes and a new tip loss factor. Furthermore, the model applies the use of the separation factor of Du and Selig to evaluate the area on the rotor disc where stall delay is most prominent. The new stall delay model was embedded in a free‐wake vortex model to estimate the aerodynamic loads on the National Renewable Energy Laboratory Phase VI rotor blades consisting of the S809 aerofoil sections. The results in this study confirm the validity of the 3D corrections by the proposed new model under both axial and yawed flow conditions. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents an investigation of two well‐known aerodynamic phenomena, rotational augmentation and dynamic stall, together in the inboard parts of wind turbine blades. This analysis is carried out using the following: (1) the National Renewable Energy Laboratory's Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation; (2) data from unsteady delayed detached eddy simulations (DDES) carried out using the Technical University of Denmark's in‐house flow solver Ellipsys3D; and (3) data from a reduced order dynamic stall model that uses rotationally augmented steady‐state polars obtained from steady Phase VI experimental sequences, instead of the traditional two‐dimensional, non‐rotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared with three select cases of the N‐sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared with those from the dynamic stall model. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in two‐dimensional flow to be investigated. Results indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current two‐dimensional dynamic stall model as used in blade element momentum‐based aeroelastic codes may provide a reasonably accurate representation of three‐dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Horizontal axis wind turbines (HAWTs) experience three‐dimensional rotational and unsteady aerodynamic phenomena at the rotor blades sections. These highly unsteady three‐dimensional effects have a dramatic impact on the aerodynamic load distributions on the blades, in particular, when they occur at high angles of attack due to stall delay and dynamic stall. Unfortunately, there is no complete understanding of the flow physics yet at these unsteady 3D flow conditions, and hence, the existing published theoretical models are often incapable of modelling the impact on the turbine response realistically. The purpose of this paper is to provide an insight on the combined influence of the stall delay and dynamic stall on the blade load history of wind turbines in controlled and uncontrolled conditions. New dynamic stall vortex and nonlinear tangential force coefficient modules, which integrally take into account the three dimensional rotational effect, are also proposed in this paper. This module along with the unsteady influence of turbulent wind speed and tower shadow is implemented in a blade element momentum (BEM) model to estimate the aerodynamic loads on a rotating blade more accurately. This work presents an important step to help modelling the combined influence of the stall delay and dynamic stall on the load history of the rotating wind turbine blades which is vital to have lighter turbine blades and improved wind turbine design systems.  相似文献   

8.
Operational wind turbines are exposed to dynamic inflow conditions because of, for instance, atmospheric turbulence and wind shear. In order to understand the resulting three‐dimensional and transient aerodynamics effects at a site, a 10m stall‐regulated upwind two‐bladed wind turbine was instrumented for a novel digital tuft flow visualization study. High definition video of a tufted blade was acquired during wind turbine operation in the field, and a novel digital image processing algorithm calculated the blade stall directly from the video. After processing O(105) sequential images, the algorithm achieved a ?5% bias error compared with previous manual analysis methods. With increasing wind speed (5m/s to 20m/s) the fraction of tufts exhibiting stalled flow increased from 5% to 40% on the outboard 40% of the blade. The independently measured instantaneous turbine power production correlates highly with the stall fraction. Some azimuthal variation in the stall fraction associated with dynamic stall induced by vertical wind shear was seen with a maximum in the 45–90° azimuthal location. The high detail, quantitative image processing method demonstrated good agreement with the expected behaviour for a stall‐regulated wind turbine and revealed azimuthal variation because of shear‐induced dynamic stall. The amount of reliable blade stall data to be obtained from digital tuft visualization has hereby been vastly increased. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
Activities by various authors on aerodynamics and control dynamics of rotating stall in axial compressor are first traced. Then, a process of stall cell evolution in a subsonic stage is discussed based on a 2-D CFD. A few numbers of vortices grow ahead of the rotor accumulating vorticity ejected from lightly stalled blades, and eventually organize a cell of circumferentially aligned huge vortices, which merge and recess repeatedly during the rotation. Such stall disturbance is intensified on trailing side of a circumferential inlet distortion and decays on the leading side. Considering these features, a new algorithm for stall warning is developed based on a correlation between pressure waveforms at each passing of a fixed blade. A remarkable change in the correlation level at near-stall provides a warning signal prior to the stall onset with sufficiently large time margin. This scheme is applied to achieve rotating stall prevention by actuating flaps installed on the hub. The last issue is on characteristics of forward swept blade which has much increased throttle margin with decreased tip loss. A 3-D computation shows that a secondary vortex generated in suction surface mid span interacts to reduce the tip leakage vortex that initiates the stall.  相似文献   

10.
Dynamic stall (DS) on a wind turbine is encountered when the sectional angles of attack of the blade rapidly exceeds the steady-state stall angle of attack due to in-flow turbulence, gusts and yaw-misalignment. The process is considered as a primary source of unsteady loads on wind turbine blades and negatively influences the performance and fatigue life of a turbine. In the present article, the control requirements for DS have been outlined for wind turbines based on an in-depth analysis of the process. Three passive control methodologies have been investigated for dynamic stall control: (1) streamwise vortices generated using vortex generators (VGs), (2) spanwise vortices generated using a novel concept of an elevated wire (EW), and (3) a cavity to act as a reservoir for the reverse flow accumulation. The methods were observed to delay the onset of DS by several degrees as well as reduce the increased lift and drag forces that are associated with the DSV. However, only the VG and the EW were observed to improve the post-stall characteristics of the airfoil.  相似文献   

11.
An experimental study was performed to assess the feasibility of passive air jet vortex‐generators to the performance enhancement of a domestic scale wind turbine. It has been demonstrated that these simple devices, properly designed and implemented, can provide worthwhile performance benefits for domestic wind turbines of the type investigated in this study. In particular, this study shows that they can increase the maximum output power coefficient, reduce the cut‐in wind speed and improve power output at lower wind speeds while reducing the sensitivity to wind speed unsteadiness. A theoretical performance analysis of a 500 kW stall‐regulated wind turbine, based on blade element momentum theory, indicates that passive air jet vortex‐generators would be capable of recovering some of the power loss because of blade stall, thereby allowing attainment of rated power output at slightly lower average wind speeds. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
As larger wind turbines are placed on taller towers, rotors frequently operate in atmospheric conditions that support organized, coherent turbulent structures. It is hypothesized that these structures have a detrimental impact on the blade fatigue life experienced by the wind turbine. These structures are extremely difficult to identify with sophisticated anemometry such as ultrasonic anemometers. This study was performed to identify the vortex characteristics that contribute to high‐amplitude cyclic blade loads, assuming that these vortices exist under certain atmospheric conditions. This study does not attempt to demonstrate the existence of these coherent turbulent structures. In order to ascertain the idealized worst‐case scenario for vortical inflow structures impinging on a wind turbine rotor, we created a simple, analytic vortex model. The Rankine vortex model assumes that the vortex core undergoes solid body rotation to avoid a singularity at the vortex centre and is surrounded by a two‐dimensional potential flow field. Using the wind turbine as a sensor and the FAST wind turbine dynamics code with limited degrees of freedom, we determined the aerodynamic loads imparted to the wind turbine by the vortex structure. We varied the size, strength, rotational direction, plane of rotation, and location of the vortex over a wide range of operating parameters. We identified the vortex conformation with the most significant effect on the blade root bending moment cyclic amplitude. Vortices with radii on the scale of the rotor diameter or smaller caused blade root bending moment cyclic amplitudes that contribute to high damage density. The rotational orientation, clockwise or counter‐clockwise, produces little difference in the bending moment response. Vortices in the XZ plane produce bending moment amplitudes significantly greater than vortices in the YZ plane. Published in 2005 by John Wiley & Sons, Ltd.  相似文献   

13.
M. H. Hansen 《风能》2003,6(2):179-195
Stall‐induced edgewise blade vibrations have occasionally been observed on three‐bladed wind turbines over the last decade. Experiments and numerical simulations have shown that these blade vibrations are related to certain vibration modes of the turbines. A recent experiment with a 600 kW turbine has shown that a backward whirling mode associated with edgewise blade vibrations is less aerodynamically damped than the corresponding forward whirling mode. In this article the mode shapes of the particular turbine are analysed, based on a simplified turbine model described in a multi‐blade formulation. It is shown that the vibrations of the blades for the backward and forward edgewise whirling modes are different, which can explain the measured difference in aerodynamic damping. The modal dynamics of the entire turbine is important for stability assessments; blade‐only analysis can be misleading. In some cases the modal dynamics may even be improved to avoid stall‐induced vibrations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A numerical tool for investigating the aeroelastic stability of a single wind turbine blade subjected to combined flap/lead–lag motion is presented. Its development is motivated by recent concern about destructive edgewise vibrations of modern stall‐controlled blades. The stability tool employs a finite element formulation to discretize in space the structural and aerodynamic governing equations. Unsteady aerodynamics is considered by means of the extended ONERA lift and drag models. The mathematical form of these models allows for a combined treatment of dynamics and aerodynamics through the introduction of a so‐called ‘aeroelastic beam element’. This is an extended two‐node beam element having both deformation and aerodynamic degrees of freedom. Several linear and non‐linear versions of the stability tool are available, differing in the way that instantaneous lift and/or drag is treated. In the linear case, stability is investigated through eigenvalue analysis. Time domain integration is employed for non‐linear stability analysis. Results are presented and discussed for a 17 m stall‐controlled blade. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this study is to assess the load predicting capability of a classical Beddoes–Leishman dynamic stall model in a horizontal axis wind turbine environment, in the presence of yaw misalignment. The dynamic stall model was tailored to the horizontal axis wind turbine environment and validated against unsteady thick airfoil data. Subsequently, the dynamic stall model was implemented in a blade element‐momentum code for yawed flow, and the results were compared with aerodynamic measurements obtained in the MEXICO (Model Rotor Experiments under Controlled Conditions) project on a wind turbine rotor placed in a large scale wind tunnel. In general, reasonable to good agreement was found between the blade element‐momentum model and MEXICO data. When large yaw misalignments were imposed, poor agreement was found in the downstroke of the movement between the model and the experiment. Still, over a revolution, the maximum normal force coefficient predicted was always within 8% of experimental data at the inboard stations, which is encouraging especially when blade fatigue calculations are being considered. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Wind tunnel and numerical study of a small vertical axis wind turbine   总被引:2,自引:0,他引:2  
This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance.Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance.The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper.  相似文献   

17.
In this paper, a computational study of the DTU 10MW reference wind turbine unsteady aerodynamics is presented. The whole wind turbine assembly was considered, including the complete rotor and the tower. The FINE/Turbo flow solver developed by NUMECA International was employed for the simulations. In particular, the Non‐Linear Harmonic (NLH) method was applied in order to accurately model flow unsteadiness at reduced computational cost. Important vortex shedding structures were identified at low blade span range and all along the tower height. A strong interaction between rotor and tower flows was also observed. Lastly, the performance of the NLH approach was compared against a standard Unsteady Reynolds‐Averaged Navier Stokes simulation. The same complex unsteady flow phenomena were captured by both technologies. Nevertheless, the NLH approach was found to be 10 times faster than the Unsteady Reynolds‐Averaged Navier Stokes method for this particular application. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
Hsiao Mun Lee  Yanhua Wu 《风能》2015,18(7):1185-1205
Volumetric velocity fields were measured using tomographic particle image velocimetry on a model of the blade of a 5 kW horizontal‐axis wind turbine to study the effects of freestream turbulence levels (FTLs) at 0.4%, 4% and 13% on stall delay phenomenon at two different global tip speed ratios of 3 and 5 with Reynolds number (Re) ? 5000. Static pressures were measured, and results illustrated that FTL has stronger effect on the surface pressures of the static airfoil. Magnitudes of the absolute velocities within the separated flows above the static airfoil's suction surface increase significantly with higher FTL, while the changes of these velocities above the rotating blade's surface are less obvious. Radial flows from rotating blade's root to tip were also observed with strong spanwise velocity component located in the vicinities of the vortices. At the root and middle sections of the rotating blade, the flows with strong radial velocity component, w, become wider with higher FTL near to the rotating blade's leading edge when the angles of attack (AOAs) are large. At large AOAs, the strength and size of the vortices shed from the rotating blade's leading and trailing edges decrease significantly with higher FTL. However, at small AOAs, the size and coherence of the vortices near the rotating blade's trailing edge increase significantly with higher FTL. Surface streamlines of the rotating blade illustrated that at the rotating blade's root region and at large AOAs, the streamlines tend to lean toward the rotating blade's trailing edge at higher FTL. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
If a vertical axis wind turbine is mounted offshore on a semi‐submersible, the pitch motion of the platform will dominate the static pitch and dynamic motion of the platform and wind turbine such that the effect of tower tilting on the aerodynamics of the vertical axis wind turbine should be investigated to more accurately predict the aerodynamic loads. This paper proposes certain modifications to the double multiple‐streamtube (DMS) model to include the component of wind speed parallel to the rotating shaft. The model is validated against experimental data collected on an H‐Darrieus wind turbine in skewed flow conditions. Three different dynamic stall models are also integrated into the DMS model: Gormont's model with the adaptation of Strickland, Gormont's model with the modification of Berg and the Beddoes–Leishman dynamic stall model. Both the small Sandia 17 m wind turbine and the large DeepWind 5 MW are modelled. According to the experimental data, the DMS model with the inclusion of the dynamic stall model is also well validated. On the basis of the assumption that the velocity component parallel to the rotor shaft is small in the downstream part of the rotor, the effect of tower tilting is quantified with respect to power, rotor torque, thrust force and the normal force and tangential force coefficients on the blades. Additionally, applications of Glauert momentum theory and pure axial momentum theory are compared to evaluate the effect of the velocity component parallel to the rotor shaft on the accuracy of the model. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Modern offshore wind turbines are susceptible to blade deformation because of their increased size and the recent trend of installing these turbines on floating platforms in deep sea. In this paper, an aeroelastic analysis tool for floating offshore wind turbines is presented by coupling a high‐fidelity computational fluid dynamics (CFD) solver with a general purpose multibody dynamics code, which is capable of modelling flexible bodies based on the nonlinear beam theory. With the tool developed, we demonstrated its applications to the NREL 5 MW offshore wind turbine with aeroelastic blades. The impacts of blade flexibility and platform‐induced surge motion on wind turbine aerodynamics and structural responses are studied and illustrated by the CFD results of the flow field, force, and wake structure. Results are compared with data obtained from the engineering tool FAST v8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号