首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于典型注采条件下的渗流模型,在分析一注一采渗流场分布特点的基础上,通过研究注采井间压力、压力梯度的变化规律,提出了实现水驱开发有效驱替的条件,并建立了注采单元内流体可驱动面积的计算方法。利用本文建立的方法,结合油田实例进行计算分析,通过研究注采单元中驱替压力梯度与有效驱替范围的变化关系,确定了普通稠油油藏水驱开发的有效注采井距,结果表明本文方法具有良好的操作性,可以指导普通稠油油藏水驱开发注采井距的合理部署。  相似文献   

2.
确定菱形注采井网的合理注采井距和井排比,是低渗透各向异性油藏实现储量有效动用和注采均衡驱替开发部署设计的关键。基于一般低渗透油藏特点,建立了考虑启动压力梯度和渗透率各向异性影响的渗流方程,利用经典渗流力学理论,得到了菱形反九点井网注采单元中渗流场分布的解析解;基于注采单元中平面渗流速度变化的分析,提出了评价储量有效动用状况的方法,得到了不同条件下低渗透各向异性油藏储量动用变化规律及主要影响因素;以满足注采单元中“有效动用范围要求和均衡驱替系数最大”为优化目标,建立了低渗透各向异性油藏菱形反九点井网优化的计算模型,实现了菱形井网合理井距和最佳井排比的联立优化求解。实例分析表明,根据建立的低渗透各向异性油藏菱形井网优化设计方法,可以得到适合油藏实际条件和满足开发要求的合理井距和最佳井排比,为此类油藏的有效开发和注采井网的优化部署提供了科学依据。  相似文献   

3.
郑伟 《石油地质与工程》2016,(4):106-109,149
根据渗流理论,推导了水平井注采井网井间压力及压力梯度分布公式,分析了水平井注采井网、混合井网和直井井网不同井网系统沿程压力及压力梯度分布规律,提出了低渗透油藏极限注采井距确定方法,并对其影响因素进行了分析。结果表明,直井井网系统驱替压力梯度在注采井附近较大,而在注采井间较大范围内较小;水平井井网系统的流体在注采井间内为近似线性流动,压力降几乎呈线性变化,压力损失明显低于直井,具有更大的驱替压力梯度,且沿程基本保持不变。因此对于低渗透油藏,水平井注采井网更容易形成有效驱替,其极限注采井距为直井井网的3~4倍,混合井网的2~3倍。  相似文献   

4.
裂缝性特低渗透储层注采井网模式只有适应裂缝发育方向与强度,同时建立有效的驱替压力系统才能合理有效开发。以甘谷驿油田唐80井区三叠系延长组长6油层组裂缝性特低渗透油层为例,研究认为:原近于圆形的反九点丛式井网严重不适应裂缝性特低渗透储层渗流特征是造成开发效果差的主要原因;菱形反九点为首选初始基础井网,合理排距为140m,井距为500m;在开发后期适时调整为矩形反五点井网或排状注采井网,实现平行裂缝方向注水,垂直裂缝方向驱油。  相似文献   

5.
低渗透断块油藏合理注采井距研究   总被引:1,自引:0,他引:1  
低渗透断块油藏储量丰度小,渗透率较低,存在启动压力梯度,很难建立有效的驱替压差,而且含油面积小、形状复杂,很多属于典型的窄条状油藏,难以形成规则的注水井网,后期井网调整困难,需要一次布井成功,所以注采井距一定要选取合理.采用油藏实际岩心,通过物理模拟实验,得到了低渗透油藏的启动压力参数;利用实验结果,通过理论分析和数值模拟计算,重点研究了启动压力梯度和储层条件等对有效井距、合理井距和井网形式的影响.提出了首先将物理模拟实验、油藏工程理论推导和数值模拟计算相结合,计算得到低渗透断块油藏的合理注采井距,然后在此基础上进行合理井网部署的方法.研究结果应用于油田实际区块的井网部署中,取得了较好的开发效果,与同类油藏相比采收率可提高1.86% ~ 2.6%.  相似文献   

6.
双河油田Ⅳ5-11层系二元复合驱合理井网井距研究   总被引:1,自引:0,他引:1  
油田进入高含水开发后期,聚/表二元复合驱技术是进一步提高采收率的有效途径,合理的井网井距是其成功的关键。在双河油田Ⅳ5-11层系实际地质条件下,利用数值模拟方法研究了四点法面积井网、五点法面积井网、九点法面积井网、排状井网对二元复合驱的影响,结果表明五点法面积井网提高采收率的幅度最大。在考虑注入能力、采液能力及渗透率与注采井距关系、二元复合驱驱替液在不同井距下的流动速度、见效时间以及表面活性剂的有效作用距离的情况下,计算求得双河油田Ⅳ5-11层系二元复合驱合理注入速度为0.1~0.11PV/a,不同渗透率条件下的合理井距为170~283m,为Ⅳ5-11层系井网部署提供了重要依据。  相似文献   

7.
井网加密调整是复杂断块油藏高含水期改善开发效果的重要措施,合理注采井距的确定是决定井网加密调整效果的关键.以一注两采井组为例,以均衡驱替为目标,以油水两相不稳定渗流理论为基础,考虑断块油藏储层物性、剩余油分布和地层倾角等因素,建立了复杂断块油藏高含水期合理井距确定方法,并采用油藏数值模拟进行了验证分析.结果表明,对于水驱方向垂直构造线方向的一注两采井网,在其他储层条件和剩余油饱和度相同的条件下,地层倾角越大,达到均衡驱替所需的注采井距比越大;注采井间储层渗透率、油井含水率差异越大,达到均衡驱替时所需的注采井距比越大.数值模拟验证结果表明,在地层倾角为10.、油井含水率均为90%时,该方法计算出注水井左右两侧注采井距的比值为1.264,按此结果进行井网部署,10a末注水井左右两侧油井含水率分别为96.85%和97.13%,2口油井含水率相差0.28%,总采出程度为38.37%,比均匀布井可提高采出程度5.81%.  相似文献   

8.
从渗流理论出发,首次推导了直井注-水平井采混合井网系统井间沿程压力与压力梯度分布公式,并对其分布规律进行了分析。结合物理模拟实验得到的启动压力梯度数学表达式,提出了计算低渗透油藏混合井网注采井距的方法,分析了注采压差、渗透率和水平段长度对注采井距的影响。研究表明,混合井网系统所需要的生产压差远小于直井井网,因此混合井网更容易形成有效驱替,可以采取更大的注采井距。  相似文献   

9.
长63油藏属超低渗低压油藏,天然能量较弱。超前注水后全面投入开发,投产初期单井产量低,含水率变化稳定,部分油井压力下降,部分注水井压力上升。研究认为:在目前井网条件下,部分井组井距过大,没有建立起有效的驱替压力系统,要形成有效驱替必须缩小井距;笼统注水使得注采层位不对应,造成油井产液量较低。通过研究,提出下步调整措施,即进一步细分层系,加密井网,缩小注采井间的距离。现场实施后效果显著。  相似文献   

10.
低渗透砂岩油藏注采井网的调整   总被引:1,自引:0,他引:1  
对于裂缝不发育的油田,应根据储层发育状况,选择合理的井网调整方式.正方形反九点法面积注水井网具有调整灵活的特点,可调整为五点法面积、横向线状行列、纵向线状行列和九点法注水方式.从不同井网波及系数来看,相同流度比条件下,五点法井网水驱波及面积及水驱控制程度最高.低渗透油田初期采用较高的油水井数比,压力保持水平往往较低.预测结果表明,转注越晚,压力恢复时间越长,开发效果越差.因此,在注采井网不能满足开发需要后,调整越早,越有利于提高油田开发效果.  相似文献   

11.
低渗透油田建立有效驱替压力系统研究   总被引:1,自引:0,他引:1  
何贤科  陈程 《特种油气藏》2006,13(2):56-57,69
启动压力规律和渗流理论研究表明,只有当驱替压力梯度完全克服油层启动压力梯度时,注采关系才能建立,因此克服低渗透油层启动压力梯度的最小驱替压力梯度所对应的注采井距,即是注水井和生产井之间能够建立有效驱替的最大注采井距。根据低渗透油田油气渗流理论推导出不等产量的注水井和生产井之间驱替压力梯度的分布表达式,可以反映出注水井与生产井之间的压力分布情况。模拟计算表明,若将该成果应用于低渗透注水开发油田将会明显改善开发效果。  相似文献   

12.
目前,大多数油田采用相对规则的面积井网进行开发,受储层非均质的影响,各油田开发效果差异大。为此,提出对位于渗透率低值区的采油井进行人工压裂的方法,以达到井网均衡驱替的目的。以矩形五点井网为研究对象,推导出矩形五点井网内压裂井与未压裂井的见水时间计算公式;并以各采油井同时见水为目标,结合流线积分法和等效井径法,建立非均质油藏内位于渗透率低值区的压裂井的最优裂缝半长计算方法。通过分析储层渗透率级差、注采井距、注采压差差值及裂缝导流能力对压裂井最优裂缝半长的影响可知:最优裂缝半长随注采压差差值和裂缝导流能力的增大而减小;当储层渗透率级差和注采井距较大时,压裂井所需的最优裂缝半长也较大。  相似文献   

13.
聚合物驱后组合驱合理井网井距的确定   总被引:3,自引:0,他引:3  
根据经验,聚合物驱后组合驱在注采井网井距问题上可参考聚合物驱井网井距的研究方法。由于油田实际资料表明吸水、产液指数相差较小,因此组合驱选择五点法面积井网较为合理。又由于组合驱井网井距大小主要影响聚合物的热降解情况,因此可根据化学剂在地层中的粘度-浓度关系、水解增粘规律、剪切降解及热降解规律,可求得组合驱中不同浓度聚合物段塞在注入地层不同时间后的粘度;再结合不同井距下组合驱驱替液流动速度及见效时间,并考虑注入能力、采液能力以及油层渗透率与注采井距的关系,即可得到组合驱井距的合理范围。  相似文献   

14.
注水开发是目前油田最主要的开发方式之一,受地层、流体、井网等条件的影响,注入水在地下驱替不均衡。油田进入高、特高含水开发阶段,剩余油分布越来越复杂,传统的开发调整措施面临较大的困难。生产实践表明,注入水在地下驱替的均衡程度与油藏开发效果密切相关,为此提出均衡驱替的概念用以指导油田开发调整方案设计,但目前主要是基于经验的定性认识,缺少定量的、理论上的论证。因此,基于油藏工程和渗流力学理论,首先推导注水开发过程中各注采方向累积注水量与累积产油量的关系式,来描述各注采方向的驱替动态;然后推导各注采方向的驱替动态和油田开发净现值的关系式,并对其进行分析;最后推导均衡驱替注采井距及注采压差优化设计公式。  相似文献   

15.
克拉玛依油田八区下乌尔禾组油藏为巨厚的特低渗透砾岩油藏,前期采用 275 m 井距反九点井网注水开发,油井见效低、压力保持程度低、采油速度低,低渗透储集层较大注采井距难以建立有效水驱是开发效果差的主要原因。小井距试验通过细分开发层系、缩小井距、改变井网方式以建立有效水驱体系。将开发层系细分为 3 套,逐层上返,首先试验 P2w4 ,由 275 m×388 m 反九点井网加密为 138 m×195 m 反九点井网,后期转为五点井网平行裂缝方向注水。同时,控制单井注水量,采用点弱面强的注采政策。试验 3 a 后,与八区正常井距区块相比,各项开发指标明显好转,预计可提高采收率 8.5%.  相似文献   

16.
宝浪油田宝北区块储层渗透率低,Ⅰ—Ⅱ油组当前注采井距为260 m,难以建立有效驱动体系。应用启动压力梯度法、低渗透油藏经验公式法和压力恢复测试法,对研究区技术极限合理注采井距进行了研究,3种方法计算的合理注采井距分别为174,170和168 m。分析宝北区块Ⅰ—Ⅱ油组调整井新井投产或老井上返补孔初期产油量统计结果可知,平均单井初期产油量约为6 t/d,现有井网条件下单井控制石油地质储量为0.93×104t,利用经济井网密度对研究区的合理注采井距进行了研究,在油价为70美元/bbl时,经济极限井网密度为35口/km2,合理注采井距为169 m。  相似文献   

17.
蟠龙油田属于特低-超低渗储层,非均质性强,油井单井产能低,迫切需要研究合理的注采井网井距,提高油井产量。首先计算了考虑变形介质和启动压力条件下的合理注采井距,然后从注采平衡的角度提出了合理的井网形式,根据裂缝特征分析了合理的井排方向,最后综合考虑了极限井网密度、最终采收率和单井控制可采储量,得到了合理的井网密度。研究结果表明,蟠龙油田合理的注采井距为350~400 m,排距100~150 m,合理的井网形式为菱形反九点面积注采井网,合理井排方向为NE66°~NE75°,合理的井网密度为25口/km2。  相似文献   

18.
在油田开发过程中,经常遇到井网调整问题,x油藏初期采用反九点井网开发,生产过程中高含水油井转注、同时采油井排排间加密,井网变为排状注采井网。而井网调整后注采井间的流场会发生改变,流体流动规律变得更加复杂。为了研究反九点井网至排状注采井网的流线演变特征,考虑储层非均质性和压实作用对势函数方程进行求解,得到反九点井网流线;进而结合实际井网的调整模式,得到了反九点井网转排状注采井网的流线模型,获得井网调整后的流线。研究结果表明,反九点井网的流线分割区位于排状注采井网的主要流动区,加密后,注入水与加密井之间的流线穿越了该部分区域,井网水驱控制程度得到改善,原先驱替效果差的区域受到注入水的波及。排状注采井网的不可动区域位于反九点井网的主流线区域,在反九点井网的开发过程中已经受到注入水的驱替。流线分布特征显示反九点井网边角井之间的流线分割区、排状注采井网原采油井排采油井与加密井之间的流线分割区以及加密前后流线分割区的叠合区水驱效果较差。研究揭示了反九点井网至排状注采井网的流线演变特征,为井网的二次加密调整提供了理论基础。  相似文献   

19.
低渗透储层喉道半径小、渗透率低、流体渗流时存在启动压力梯度。根据室内试验测试的启动压力梯度实验数据,在统计得出长庆油田的启动压力梯度与渗透率关系式的基础上,结合等产量一源一汇的稳定径向流的水动力场中的压力梯度分布公式,可理论计算出能建立有效驱替压力系统的低渗透油藏的极限注采并排距。以西峰油田某井区长8油藏为例,计算出其极限并排距,该区的实际注水开发效果表明,采用在理论计算的技术政策界限内的实际并排距的井网注水开发,建立了该区块长8油藏有效驱替压力系统。  相似文献   

20.
海上水驱稠油油田注采井距大、储量动用程度低,为提高油田开发效果,需要对基础井网进行调整。基于渤海地区实际HD油田情况和典型井网调整方式,利用渗流力学经典理论,建立基于反九点基础井网整体加密水平井进行注采井网调整的渗流模型,通过计算注采单元渗流场变化来分析不同条件下储量动用规律;利用建立的注采井网储量动用效果评价方法,优选出满足油田开发要求的加密水平井长度。研究表明:建立的组合井网储量动用评价方法结合油田实际可以得到加密水平井最佳长度为原井网井距的0.75倍。该成果可作为渤海地区及类似油藏进行注采井网调整的技术借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号