首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 250 毫秒
1.
加载速率对高温后大理岩动态力学性能的影响研究   总被引:3,自引:0,他引:3  
利用100 mm分离式Hopkinson压杆装置,对经历不同高温后的大理岩进行不同加载速率下的冲击压缩试验,研究了峰值应力、峰值应变、弹性模量等与加载速率的关系。试验结果表明,高温后大理岩的峰值应力、峰值应变均表现出显著的加载速率强化效应,随加载速率的提高而近似线性增加,但800℃之后,峰值应力的加载速率强化效应明显减弱,而峰值应变的加载速率强化效应明显加强;高温后大理岩弹性模量的加载速率相关性并不明显,随着温度的升高,弹性模量逐渐减小,到1000℃高温时,随着加载速率的增加,弹性模量基本保持不变。结合岩石材料的微观结构特征、能量吸收以及受力状态等对岩石动态力学性能的加载速率强化效应机理进行了探讨。  相似文献   

2.
高温下大理岩力学性质的试验研究   总被引:3,自引:2,他引:1  
 对徐州大理岩在常温至800 ℃下的力学性质进行试验研究,详细分析高温下及高温后大理岩的峰值应力、峰值应变、弹性模量以及应力–应变全过程曲线等随温度的变化情况,并通过扫描电镜对不同温度状态下大理岩的细观特征进行初步探讨。研究表明,随温度的上升大理岩的体积增大,而其质量及密度下降;低于400 ℃,大理岩的力学性质变化不大;高于400 ℃,大理岩的峰值应力和弹性模量均有不同幅度的降低,峰值应变随温度的升高而大幅增加;经800 ℃高温作用后大理岩的结构整体发生转变导致其力学性质发生突变;大理岩高温后的强度指标(峰值应力、弹性模量)低于其高温下的强度指标,同时,大理岩高温后的峰值应变低于其高温下的值。200 ℃以下大理岩断面微裂纹主要为张性裂纹,600 ℃以上大理岩出现缩聚裂纹和剪性裂纹且逐渐增多;高温后大理岩微裂纹的扩展、贯通比高温下更为明显。  相似文献   

3.
3种岩石高温后力学性质的试验研究   总被引:7,自引:13,他引:7  
通过单轴压缩试验,对不同高温后熔结凝灰岩、花岗岩及流纹状凝灰角砾岩的力学性质进行了研究,分析比较3种岩石峰值应力、峰值应变及弹性模量随温度的变化规律,并研究了峰值应力与纵波波速、峰值应变与纵波波速的关系。试验升温等级设为20℃,200℃,400℃,600℃,800℃五级,升温速度为30℃/min。试验结果表明,高温后3种岩石的峰值应力、弹性模量均有不同幅度的降低,且经历的温度越高,降低的幅度越大。对于峰值应变,熔结凝灰岩、花岗岩的峰值应变随温度的升高而大幅度的增加:但对于流纹状凝灰角砾岩,峰值应变随着温度的升高在降低。此外,峰值应力与纵波波速、峰值应变与纵波波速的关系依赖于不同的岩石而表现出不同的规律。  相似文献   

4.
温度是影响岩石材料物理力学性质的重要因素,为考察温度对砂岩加载速率效应的影响规律,对25℃~800℃之间6种温度水平后的砂岩试样分别进行不同加载速率下的单轴压缩试验。试验结果表明:① 高温后砂岩的物理性质出现一定的劣化,由25℃升高至800℃,密度和纵波波速分别减小了5.89%和73.72%;② 随着温度的升高,砂岩峰值强度和弹性模量逐渐减小,峰值应变逐渐增大,而峰值强度随温度的变化过程受加载速率的影响较大;③ 高温后砂岩的峰值强度和峰值应变具有明显的加载速率效应,且服从正线性关系,相关性参数A表征了材料受加载速率影响的显著程度,随着温度的升高参数A呈现先减小后又增大的趋势;④随着温度和加载速率的增大,砂岩破坏形态由拉剪混合破坏逐步转化为单一斜剪破坏,破坏程度愈渐剧烈,分形维数也逐渐增大。  相似文献   

5.
为研究高温状态下岩石动态力学性能,利用变截面SHPB试验装置及配套高温环境箱,对常温(25℃),200℃,400℃,600℃,800℃和1 000℃共6种温度作用下砂岩试件,进行6种加载速率冲击压缩试验。结果表明:(1)动态峰值应力与加载速率呈二次多项式函数关系,正相关性显著。200℃~800℃温度具有强化作用,200℃时最明显;1 000℃温度具有软化作用。(2)动态峰值应变与加载速率近似为二次多项式函数关系,正相关性明显。200℃~600℃温度作用影响不明显;800℃温度作用明显,1 000℃时温度作用显著。(3)动态弹性模量受加载速率作用不明显,随温度升高整体呈下降趋势。200℃~600℃时幅值变化在一定范围;800℃和1 000℃时幅值相对较小。(4)试件破坏形态不同,随温度增加由脆性破坏向延脆性破坏转化。随加载速率增大,破裂面逐渐增多,破碎程度加剧,碎块尺寸减小。1000℃时,加载速率较小时破碎效果不明显,加载速率较大时破碎效果显著。  相似文献   

6.
采用电液伺服材料力学试验系统对常温~800℃高温作用下大理岩的力学性能进行了研究,考察了大理岩的全应力 应变曲线、峰值应力σp、峰值应变εp、弹性模量E等量的变化特征。结果表明:随受热温度升高大理岩的峰值应力和弹性模量不同程度上渐次降低,尤其是在不同温度段岩石强度降低具有突变性,而峰值应变不同程度渐次增长。800℃时大理岩的延性明显增强,应力达到峰值后,应变仍表现出缓慢增加特性,但最终大理岩破坏方式仍以脆断为主。研究结果一定程度上反映了大理岩在温度作用下内部结构变化的特征,可为相关岩体工程设计与研究提供参考。  相似文献   

7.
高温后砂岩动态压缩条件下力学特性研究   总被引:4,自引:0,他引:4  
利用分离式霍普金逊压杆装置(SHPB)进行单轴动态压缩实验,研究砂岩经历25℃~800℃高温作用冷却后,密度、纵波波速、峰值强度随温度的变化规律;同时从破坏模式、块度分布以及高速摄影特性角度分析了高温后砂岩的动态破碎特性。研究结果表明:随着温度的升高,试样的密度、纵波波速、峰值强度均逐渐减小,200℃后纵波波速降低的幅度增大,400℃~600℃之间峰值强度降低幅度较小,800℃后峰值强度急剧下降;历高温后砂岩的动态破碎特点主要为拉伸破坏,且随着温度的升高,破碎程度越大,岩块分布趋细粒化。通过高速摄影仪拍摄图象,直观地再现了岩石动态破坏过程,发现纵向裂纹沿加载方向随机分布在岩样四周,且初始载荷时岩石破碎形态不具代表性而是随着应力波多次反射才形成最终的破坏形态。  相似文献   

8.
三种岩石高温后纵波波速特性的试验研究   总被引:3,自引:0,他引:3  
对经受不同高温后熔结凝灰岩、花岗岩及流纹状凝灰角砾岩的波动特性进行了研究,分析比较了三种岩石纵波波速、密度、弹性模量及峰值应力随经历温度的变化规律,并研究了纵波波速与密度,纵波波速与弹性模量,纵波波速与峰值应力的关系。结果表明,经历高温后三种岩石的纵波波速、密度、弹性模量及峰值应力均有不同程度的降低,且随着经历温度的升高,降低的幅度增大。此外,纵波波速降低的幅度均大于密度降低的幅度;而纵波波速与弹性模量、峰值应力的关系则依赖于不同的岩石而表现出不同的规律。  相似文献   

9.
采用φ100分离式霍普金森压杆系统,研究了不同温度作用后玄武岩纤维增强混凝土(BFRC)的冲击变形特性.结果表明:随着温度及加载速率的升高,BFRC的变形破碎程度增大,应力应变曲线表现出塑性特征;同一温度下,BFRC的峰值应变和均值应变随平均应变率的增大而增大,具有明显的应变率相关性;同一加载速率下,随着温度的升高,BFRC的峰值应变和均值应变呈上升趋势,峰值应变的应变率敏感性逐渐增强,但在200℃时,BFRC在较低加载速率作用下的均值应变较常温有所减小;掺入玄武岩纤维可以有效提升高温后BFRC的冲击变形能力,且纤维掺量(体积分数)为0.3%时,BFRC的变形优势最大,但当温度与加载速率较低时,BFRC的均值应变较素混凝土小.  相似文献   

10.
岩石经历高温作用后会产生不同程度的热损伤。通过单轴压缩试验,对经历25℃,100℃,200℃,400℃,600℃,800℃,1 000℃高温作用后的砂岩试样力学特性进行分析;通过超声纵波试验,基于小波变换方法,在时域和频域对其超声特性进行研究。提出频谱峰度(KFS)的概念,用以描述超声信号频率分布的杂乱/集中程度。研究发现:随着作用温度的升高,砂岩试样表面色调变暖,纵波波速显著降低,波形趋于紊乱,峰值应变增大,峰值应力、弹性模量变化呈现出非线性特征。在频域对超声信号进行分析发现,砂岩试样接收谱形心频率和频谱峰度随温度的变化呈非单调性,其与峰值应力、弹性模量的变化规律有较强的一致性。砂岩是一种典型的矿物胶结岩,矿物颗粒和胶结物在高温作用下产生不同变化,并对砂岩的各项特性产生不同影响。以宏观的声学力学特征变化探究不同等级高温作用后砂岩的热损伤,研究结果对高温环境岩石工程具有一定的指导意义。  相似文献   

11.
高温后石灰岩的物理力学特性研究   总被引:1,自引:0,他引:1  
对焦作石灰岩在常温及经历100℃~800℃不同温度作用后的物理力学特性进行了试验研究,详细分析了加温后石灰岩的表观形态、体积、质量、密度和纵横波波速以及单轴下石灰岩的峰值应力、峰值应变和弹性模量等的变化情况,并对石灰岩高温劣化的影响因素进行了分析。研究结果表明,高温使石灰岩的表观形态发生改变:在400℃以内,温度对石灰岩的物理力学性质的影响不大;200℃以下石灰岩的体积略微减少,超过200℃后石灰岩的体积明显增大,石灰岩的密度随温度的升高而逐步减少;随温度的升高,石灰岩的纵、横波波速大都呈现下降;高温后石灰岩的波速比变化呈无规律性;高温后石灰岩的动弹性模量随温度上升而下降。经历的温度超过400℃后石灰岩的峰值应力和弹性模量均有不同幅度的降低,而800℃内石灰岩的峰值应变随温度的升高变化不明显。温度引起的热应力作用、矿物组分和微结构变化导致石灰岩物理力学性质发生改变与高温劣化。  相似文献   

12.
 运用偏光显微技术,比较不同温度处理后砂岩、花岗岩和大理岩微观结构的不同变化特征。分析对比常温~800 ℃高温处理后三类岩石纵波波速、孔隙率、弹性模量、峰值应力及应变的变化规律,并讨论其与微观结构变化的内在联系。结合岩石热损伤后初始损伤程度增大、微裂纹刚度弱化及张开度增大等特征,采用细观损伤力学模型研究热损伤岩石应力–应变曲线显著的非线性特征。研究结果表明:(1) 热处理砂岩细观结构的变化主要表现为胶结物变化及矿物相变,矿物内无明显热裂纹发育;热处理花岗岩内热裂纹发育明显,800 ℃处理后最大裂纹宽度可达100 ?m,较400 ℃时增加约1个数量级;大理岩热裂纹以晶界裂纹为主,600 ℃处理后最大裂纹宽度达20 ?m,约为400 ℃时的2倍。(2) 花岗岩和大理岩的弹性模量随热处理温度的增大持续降低,但砂岩的弹性模量在500 ℃热处理温度阈值之后才显著下降。(3) 三类热损伤岩石的宏观物理力学性质与其形成条件、矿物组分、微裂纹发育密切相关。(4) 基于均匀化理论的细观损伤力学模型的计算值与试验值吻合良好,热损伤岩石应力–应变曲线初始压密阶段显著延长的力学行为与微裂纹密度和刚度直接相关。  相似文献   

13.
 对不同温度下(20 ℃~700 ℃)及高温后(100 ℃后,200 ℃后)喜马拉雅山盐岩进行单轴压缩破坏试验,获得其受高温作用的力学特征和破坏形态,探讨峰值应力、峰值应变和弹性模量的变化规律,并重点分析高温下其应力–应变曲线的特殊性。研究结果如下:当温度低于120 ℃时,盐岩的抗压强度和弹性模量随温度的升高而降低,120 ℃~200 ℃时,随温度的升高而增加;在较高温度下(500 ℃及以上),盐岩的内部结构发生突变,峰值应力大大降低;盐岩的应力–应变曲线在不同温度区间有较大差异,170 ℃是其发生突变的阈值;当温度为170 ℃~400 ℃时,盐岩呈现出明显的应变硬化特性;喜马拉雅山盐岩所能承受的极限温度不超过700 ℃;与同等高温下相比,经历100 ℃和200 ℃高温后的盐岩,其承载能力降低,变形及弹性模量较小,其内部出现较多裂纹,整体性较差。  相似文献   

14.
 利用RMT–150B岩石力学试验系统和GD–65/150高低温环境箱,对煤系砂质泥岩在25 ℃~55 ℃温度下的力学特性开展试验研究,分析不同温度下砂质泥岩的应力–应变全过程曲线、峰值应力、峰值应变、弹性模量以及变形模量受温度的影响。研究结果表明,不同温度下砂质泥岩的力学特性有差异。随着温度的升高,其峰值应力、峰值应变逐渐降低,但在40 ℃前后峰值应力和峰值应变随温度的升高其减小幅度不同,峰值应力值从25 ℃到40 ℃降幅达22.1%,从40℃到55℃降幅达4.3%,峰值应变从25 ℃到40 ℃减小了12.9%,从40 ℃到55 ℃应变减小了29.9%;弹性模量随着温度的升高呈线性减小;变形模量随着温度的升高呈线性增大。研究结果对实施深部煤炭的安全高效开采以及深部软岩工程灾害的预测和控制具重要的理论意义和实用价值。  相似文献   

15.
饱和砂岩在疲劳载荷作用下的黏弹性性质   总被引:2,自引:1,他引:1  
 采用由法国引进的Metravib热机械分析仪,用正弦波加载方式,模拟地震波(行波)的传播,试验时固定静载为100 N,正弦波动载荷恒为60 N,将总载荷控制在屈服点以下;在温度为-50 ℃~125 ℃、升温速率保持在1 ℃/min、频率为5~90 Hz的条件下,对饱和泵油长石砂岩、彭山砂岩圆柱形样品进行单轴循环加载试验,求取饱和泵油长石砂岩和彭山砂岩波的能量衰减、虚模量、杨氏模量、弹性波速度与温度和频率的关系。以此研究饱和多孔岩石中行波的能量衰减和虚模量随温度的变化规律,取得行波随频率增高饱和多孔岩石的能量衰减峰和虚模量峰的峰位向高温方向移动、能量衰减峰和虚模量峰的强度增大的热激活弛豫规律,这种行波规律也是热激活弛豫机制引起。同时,获得饱和岩石的杨氏模量和弹性波速度对温度和频率的动态响应。杨氏模量和弹性波波速随温度升高而下降,随频率增高而增大,具有较明显的频散效应,随温度升高频散效应有减弱的趋势,取得与低频共振的驻波试验同样的热激活弛豫规律,说明热激活弛豫规律在饱和多孔岩石中具有一定的普适性。其结果是研究时温等效的试验和理论基础;同时该研究结果对岩石物理理论模型研究具有很好的指导意义,对现场地震波和声波测试结果和地震勘探资料的解释具有现实意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号