首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 531 毫秒
1.
高温下大理岩力学性质的试验研究   总被引:3,自引:2,他引:1  
 对徐州大理岩在常温至800 ℃下的力学性质进行试验研究,详细分析高温下及高温后大理岩的峰值应力、峰值应变、弹性模量以及应力–应变全过程曲线等随温度的变化情况,并通过扫描电镜对不同温度状态下大理岩的细观特征进行初步探讨。研究表明,随温度的上升大理岩的体积增大,而其质量及密度下降;低于400 ℃,大理岩的力学性质变化不大;高于400 ℃,大理岩的峰值应力和弹性模量均有不同幅度的降低,峰值应变随温度的升高而大幅增加;经800 ℃高温作用后大理岩的结构整体发生转变导致其力学性质发生突变;大理岩高温后的强度指标(峰值应力、弹性模量)低于其高温下的强度指标,同时,大理岩高温后的峰值应变低于其高温下的值。200 ℃以下大理岩断面微裂纹主要为张性裂纹,600 ℃以上大理岩出现缩聚裂纹和剪性裂纹且逐渐增多;高温后大理岩微裂纹的扩展、贯通比高温下更为明显。  相似文献   

2.
 基于改进的分离式霍普金森压杆,研究实时温度下中–细粒花岗岩的动力响应与吸能特性。结果表明:温度在20 ℃~500 ℃下,花岗岩全应力–应变曲线的弹性、塑性与应变软化3个阶段特征明显,700 ℃时的应力–应变曲线出现塑性屈服平台;应变率增加,岩石抗压强度增大,但随温度的升高应变率效应逐渐减弱;温度和应变率对岩石弹性模量的影响规律均不明显;应变率增加会使岩石单位体积的能量吸收能力提高,但不同温度下应变率对单位体积吸能的影响效果有较大差异;500 ℃及以下时峰值应变的应变率效应比较接近,但700 ℃时峰值应变的应变率敏感系数大幅增加;采用相同气压加载时,发现不同温度下应变率所处范围差异较大,而且气压对应变率的影响系数也不相同;500 ℃及以下,随应变率增加试样破坏形式从劈裂过渡到碎裂,700 ℃时试样则呈粉碎性破坏。  相似文献   

3.
 利用RMT–150B岩石力学试验系统和GD–65/150高低温环境箱,对煤系砂质泥岩在25 ℃~55 ℃温度下的力学特性开展试验研究,分析不同温度下砂质泥岩的应力–应变全过程曲线、峰值应力、峰值应变、弹性模量以及变形模量受温度的影响。研究结果表明,不同温度下砂质泥岩的力学特性有差异。随着温度的升高,其峰值应力、峰值应变逐渐降低,但在40 ℃前后峰值应力和峰值应变随温度的升高其减小幅度不同,峰值应力值从25 ℃到40 ℃降幅达22.1%,从40℃到55℃降幅达4.3%,峰值应变从25 ℃到40 ℃减小了12.9%,从40 ℃到55 ℃应变减小了29.9%;弹性模量随着温度的升高呈线性减小;变形模量随着温度的升高呈线性增大。研究结果对实施深部煤炭的安全高效开采以及深部软岩工程灾害的预测和控制具重要的理论意义和实用价值。  相似文献   

4.
高温后大理岩的冲击力学特性试验研究   总被引:1,自引:0,他引:1  
 利用分离式霍普金森压杆设备对经历不同高温冷却后大理岩的冲击力学特性进行试验研究,得到不同高温作用后大理岩冲击压缩的应力–应变曲线,分析高温后大理岩纵波波速的变化及在冲击荷载作用下的峰值应力、峰值应变、弹性模量随温度的变化规律。研究结果表明,高温后大理岩的纵波波速随着温度的升高近似线性下降;在800 ℃之前,同一冲击加载速率作用下大理岩的峰值应力随着温度的提高变化并不明显,在800 ℃之后,峰值应力迅速减小;在600 ℃之前,同一冲击加载速率作用下大理岩的峰值应变随着温度的提高无明显变化,但在600 ℃之后,峰值应变随着温度的提高近似线性增加;总体上,弹性模量随着温度的升高呈现降低的趋势,且经历的温度越高,弹性模量下降的幅度越大。结合高温后岩石内部微观结构特征的变化,对大理岩冲击力学特性随温度的变化进行分析。  相似文献   

5.
采用MTS材料特性试验机针对高温高压下盐岩的力学性质进行了三轴压缩试验研究,通过不同温度、围压下的三轴应力应变曲线,分析了温度、围压对盐岩弹性模量和屈服应力的影响以及高温高压下盐岩的破坏特点。结果表明:盐岩即使经历很大变形其应力应变曲线也不会表现出峰值。而温度升高对盐岩力学性质起到劣化作用。盐岩的屈服应力随温度升高而逐渐降低,但其弹性模量却随着温度升高而显著增大。在≥86 ℃时应该存在一个门槛温度,超过这个门槛温度使得弹性模量随温度升高而逐渐降低。围压对盐岩的初始屈服面影响较小,而温度则影响明显。盐岩试验后发生了很大变形,从标准的圆柱体被压成了鼓状,但是仍然没有发生破坏。  相似文献   

6.
高温下盐岩的声发射特性试验研究   总被引:1,自引:0,他引:1  
 利用MTS 810材料测试系统和AE21C声发射检测仪对受高温作用的喜马拉雅山盐岩在加温及加载过程中声发射的演变过程进行试验研究,分析其在20 ℃~600 ℃高温下以及高温后不同受力阶段的声发射特征。研究结果表明:加温过程中,50 ℃~400 ℃盐岩的声发射率较50 ℃时明显下降,超过400 ℃后随温度的升高盐岩的声发射活动越频繁。单轴压缩过程中,20 ℃~150 ℃时盐岩的声发射活动频率及强度随温度升高而增大,而在170 ℃~600 ℃其声发射率随温度升高而降低。170 ℃~400 ℃是盐岩自愈性得到充分体现的温度区间。在相同温度下,高温下盐岩的声发射活动弱于高温后。  相似文献   

7.
高温后花岗岩力学性能的试验研究   总被引:32,自引:12,他引:32  
对经历不同高温后花岗岩的力学性能进行了试验研究,分析了花岗岩应力.应变曲线、峰值应力、峰值应变、弹性模量和泊松比等的变化情况。研究结果表明,经历400℃以内的高温后,温度对花岗岩的力学性能的影响不明显。但经历的温度超过400℃后,随受热温度升高花岗岩力学性能迅速劣化,花岗岩峰值应力(或强度)和弹性模量急剧降低,而峰值应变迅速增长。高温后花岗岩泊松比随经历高温的增加而呈减少趋势。  相似文献   

8.
为研究火灾(高温)后破碎卵石混凝土的三轴受力性能,以温度及侧向围压为参数,完成了30个100×200mm的圆柱体试件在经历不同高温后的常规三轴加载试验.结果表明:火灾(高温)后破碎卵石混凝土试件在单向应力下的应力-应变曲线有明显的峰值点,随着温度的增加,峰值点逐渐向右下角移动;在三向应力下试件的破坏形态分为斜面剪切破坏与层状劈裂破坏;随着围压的不断增加,试件的应力-应变曲线逐渐平缓,峰值点也越来越不明显,温度的影响逐渐减小,其弹性模量、峰值应力、峰值应变均显著增加;随着温度的上升,试件的峰值应力与弹性模量整体呈下降趋势;基于试验数据建立了相关计算公式及火灾(高温)后破碎卵石混凝土在三轴应力下的应力-应变本构方程,可为相关研究提供参考.  相似文献   

9.
高温和循环高温作用后大理岩力学性能试验研究与比较   总被引:3,自引:1,他引:3  
采用MTS815.03电液伺服岩石试验系统,研究了深圳罗湖建成区F8断裂带大理岩在常温(20℃)至800℃高温下和在100℃~700℃循环高温下(8~9次循环)的应力-应变特性;系统地分析比较了高温和循环高温作用对大理岩的刚度、峰值强度及变形特性等的影响。试验结果表明:温度升高,岩石弹性模量降低,强度降低,出现峰值强度时的应变增加;当温度低于400℃的试样宏观上体现出脆性破坏的特征,而加温高于400℃的试样则渐渐体现出了延性破坏特征,峰值强度渐渐变的不明显。对两种试验比较可知:同温下,在循环加高温作用下试样的弹性模量、峰值强度等比只加一次高温要低,而且当加温温度越高时。峰值强度降低越明显。出现延性破坏特征也越明显。  相似文献   

10.
盐岩单轴应变率效应与声发射特征试验研究   总被引:1,自引:1,他引:0  
 为了建立声发射参数与盐岩力学破坏机制的关系,进一步揭示盐岩在不同应变率条件下的损伤演化规律,利用声发射技术对加载应变率分别为2×10-3,2×10-4,2×10-5 s-1下的盐岩损伤演化及声发射参数特征进行试验研究。试验发现:(1) 3种应变率加载条件下盐岩的应力–应变曲线变化趋势接近。随着加载应变率的增加,盐岩弹性极限强度略有增加,峰值强度及其对应的应变值略有变化,达到峰值强度所需的时间呈线性减少。(2) 加载速率越慢,岩石破碎越松散,产生的裂纹越多,出现的累计声发射信号数越多。(3) 加载速率越快,声发射频率越高,脆性破坏特征越明显。声发射信号频率变化幅度反映了盐岩在不同应变率条件下裂纹的生成速度和损伤演化过程,而声发射信号累计振铃数则较好地反映盐岩达到峰值强度前应力–应变曲线关系。盐岩自身透光性的变化在一定程度上反映出损伤分布区域和损伤程度。建立基于声发射信号累计振铃数的盐岩损伤演化方程,较好地反映低应变率盐岩损伤演化过程。  相似文献   

11.
高温盐溶液浸泡作用下石膏岩力学特性试验研究   总被引:6,自引:0,他引:6  
 为研究盐矿水溶开采或盐岩溶腔储库建造过程中,石膏岩夹层在温度与含Cl-盐溶液长时间共同作用下的力学特性,进行主要内容包括石膏岩在40℃,70℃半饱和、饱和盐溶液浸泡作用之后的单轴抗压强度、抗拉强度、抗剪强度试验,通过对比分析揭示石膏岩在这一特殊条件下的力学特性。主要结论如下:随温度升高、盐溶液浓度增大、浸泡时间的延长,石膏岩强度呈降低弱化趋势。浸泡60 d后石膏岩单轴抗压强度弱化系数为0.10~0.73;弹性模量随温度与浓度变化也呈线性规律降低,从40 ℃半饱和溶液中的5.92 GPa降至70 ℃饱和溶液中的0.21 GPa。相同条件下,抗拉强度也从在40 ℃环境下的0.64~0.66 MPa,降至70 ℃环境下的0.27~0.47 MPa。在70 ℃饱和盐溶液中浸泡60 d之后,石膏岩莫尔–库仑剪切强度拟合方程为 °,而相同条件下浸泡30,80 d之后的剪切强度拟合线性方程分别为 °, °。随浸泡时间的延长,石膏岩的黏聚力与内摩擦角均呈降低趋势。为区分石膏岩在不同条件下的破坏方式及其差异,定义岩石变形破坏脆性指标--破坏刚度,将其近似为岩石单轴压缩应力–应变曲线峰后破坏段斜率。实测结果表明,在干燥、40 ℃半饱和到70 ℃饱和溶液几种条件下,石膏岩的破坏刚度分别为704.4,690.1,218.9,255.2,19.5 GPa。相应破坏方式也由脆性向脆延性、延性转变。本研究对深入揭示石膏岩水力学特性及指导层状盐岩矿床储库溶腔控制溶解建造具有重要理论意义与应用价值。  相似文献   

12.
温度作用下的裂隙岩体是高放射性核废物的地层深埋处置、地热资源开发以及大都市圈的大深度地下空间开发利用等工程中经常遇到的一类复杂岩体.从加热后裂隙岩体的损伤机理研究入手,通过对不同温度应力作用后大理岩进行单轴压缩试验,得到了各温度下大理岩全应力-应变曲线,并分析了大理岩抗压强度、弹性模量和峰值应变等随加温温度变化的关系及...  相似文献   

13.
为了研究黑云母花岗岩热动力学性能,对不同实时温度(20℃,100℃,200℃)下的花岗岩试样力学响应和破坏过程进行了室内试验和数值模拟分析。结果表明:在所研究的温度范围内,20℃时岩样的抗压强度和弹性模量值最大,100℃时最小,且100℃下岩样的破碎程度比20℃和200℃的明显偏大;随着加载速率的提高,应力–应变曲线上的峰值应力和峰值应变增加,岩样内部裂纹演化及破坏程度也随之增大;低加载率时试样周边易萌生裂纹,高加载率下试样内部裂纹在加载初期甚至也可被激活;所提出的Holmquist-Johnson-Cook(HJC)模型参数确定方法是可行的,数值模拟能较好地描述热处理岩样在冲击荷载作用下力学特性;HJC模型与相关失效准则相结合,能逼真地展现岩样动态压缩破裂过程及其形破坏态变化。  相似文献   

14.
经历高温后花岗岩与混凝土力学性质的试验研究   总被引:7,自引:1,他引:7       下载免费PDF全文
对经历高温后的花岗岩和高强混凝土的力学性能进行了试验研究。比较分析了经历不同温度作用后花岗岩和混凝土的应力-应变全过程曲线、峰值应力、峰值应变和弹性模量的变化情况。研究表明:随受热温度的升高,花岗岩和高强混凝土的强度、弹性模量逐渐下降,峰值应变逐渐增大。高温后花岗岩具有明显不同于高强混凝土的特点,受热温度低于400℃,花岗岩的力学性质变化很小,而混凝土的力学性质迅速劣化。高温对混凝土力学性质的影响程度比对花岗岩要明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号