首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
采用熔融共混法制备了聚酰胺6/乙烯-1-辛烯共聚物/乙烯-乙烯醇共聚物(PA6/POE/EVOH)共混物,利用毛细管流变仪对共混物的流变行为进行了研究。结果表明:PA6/POE/EVOH共混物为假塑性流体,呈现出切力变稀的现象;EVOH的加入增大了PA6/POE/EVOH共混物的表观黏度和黏流活化能,说明共混物对温度的依赖性较强。  相似文献   

2.
以聚丙烯接枝马来酸酐(PP-g-MAH)为相容剂,制备了聚丙烯(PP)/乙烯-乙烯醇共聚物(EVOH/)聚酰胺6(PA6)共混物,研究了PP/EVOH/PA6三元共混物的相容性、流变性能、阻隔性能、力学性能、热性能及形态结构。结果表明:相容剂与EVOH和PA6间发生了反应,提高了共混物的相容性;相容剂的加入提高了PP、EVOH、PA6的结晶温度,增强了PP与EVOH和PA6间的黏合力,降低了界面张力;EVOH占EVOH/PA6总量68%的三元共混物吸油率最小,当相容剂用量为5份时,PP/EVOH/PA6三元共混物吸油率比PP/EVOH二元共混物降低了8%。  相似文献   

3.
新型丙烯-乙烯共聚物增韧聚丙烯的研究   总被引:1,自引:0,他引:1  
丙烯-乙烯共聚物Vistamaxx(VM)是一种丙烯摩尔含量占70%以上的新型弹性体。用VM增韧聚丙烯(PP),考察了PP/VM共混物的力学性能、微观形态结构以及结晶性能,并与乙烯-辛烯共聚物(POE)与PP的共混体系进行了对比。结果表明,常温下VM增韧效果优于POE,PP/VM体系拉伸性能优于PP/POE体系;VM在PP中表现出比POE更好的分散性;VM具有与PP相同的晶型,VM的加入细化了PP的晶粒。  相似文献   

4.
采用马来酸酐接枝聚丙烯(PP-g-MAH)为相容剂,增容聚丙烯/乙烯-乙烯醇共聚物(PP/EVOH)共混体系。利用旋转流变仪研究PP-g-MAH含量对PP/PP-g-MAH/EVOH共混物流变和结晶行为影响。结果表明:随着PP-g-MAH含量的增加,PP/PP-g-MAH/EVOH共混物体系相容性逐渐改善,黏度、储能模量与损耗模量均先增加后减小。此外,随着PP-g-MAH含量的增加,PP/PP-g-MAH/EVOH共混物中PP相的成核温度(T_b)和生长温度(T_c)也逐渐向低温方向偏移,同时PP晶体后期成核速率和晶体长大速率逐渐减小。  相似文献   

5.
采用反应型双螺杆挤出机制备了双单体接枝物聚丙烯(PP)接枝马来酸酐(MAH)和三烯丙基异氰脲酸酯(TAIC)[PP-g-(MAH-co-TAIC)],并以此增容PP/乙烯-乙烯醇共聚物(EVOH)共混物。研究了共混增容体系的相容性、流变性能、结晶性能、力学性能和阻隔性能。红外光谱分析表明, 接枝物加入后,在EVOH的羟基和接枝物的酸酐基团之间发生了反应,体系的相容性因此得以改观;TAIC的加入使PP的接枝率提高了13 %;扫描电子显微镜观察证实,接枝物的加入促进了EVOH和PP之间的界面结合,减小了分散相的尺寸。流变性能测试表明,TAIC的加入抑制了PP的降解;差示扫描量热仪分析表明,接枝物的加入使得PP和EVOH的结晶温度得到了提高。双单体接枝物的共混体系与单一单体接枝物的共混体系相比,对力学性能影响不大,但阻隔性能有所提高,当共单体添加量为0.4份(质量份,下同)时,体系的阻隔性能提高了28 %。  相似文献   

6.
采用熔融共混法制备了PP/POE-g-MAH/EVOH共混物,利用毛细管流变仪对共混物的流变行为进行了研究。结果表明:PP/POE-g-MAH/EVOH共混物为假塑性流体,其表观黏度随着EVOH含量的增加先升高后降低,当EVOH含量为20%时,表观黏度达到最大值。EVOH的加入增大了PP/POE-g-MAH/EVOH共混物的黏流活化能,说明共混物对温度的敏感性较强。  相似文献   

7.
将高密度聚乙烯(阻HD)、聚酰胺6(PA6)与乙烯-乙烯醇共聚物(EVOH)的复配体和相容剂初混合后,通过挤出机熔融共混、中空吹塑制得阻透容器。考察了树脂及共混物的流变性能,研究了相容剂用量、阻透树脂用量和成型工艺条件对容器阻透性能的影响。利用扫描电镜(SEM)观察了瓶壁的层状结构。实验结果表明,PA6/EVOH复配体增加了阻透树脂的熔体黏度,提高了层状共混工艺的稳定性。与PE-HD/PA6二元共混容器相比。PE-HD/PA6/EVOH三元共混容器所需相容剂更少。当阻透树脂用量为15~18份、相容剂用量为2~3份、加工温度在225~230℃之间、螺杆转速控制在30r/min左右、停留时间在3min时,PE-HD/PA6/EVOH共混容器的阻透性能得到明显提高。  相似文献   

8.
通过双螺杆熔融挤出制备了高密度聚乙烯/乙烯-乙烯醇共聚物/马来酸酐接枝乙烯-辛烯共聚物(HDPE/EVOH/POE-g-MAH)三元共混物。固定基体HDPE与分散相的比例为70:30,考察了EVOH与POE-g-MAH含量变化时,共混物形态与力学性能、流变特性以及结晶行为之间的关系。结果表明:因EVOH与POE-g-MAH之间的反应,POE-gMAH能有效地调控共混物的形态和性质。随POE-g-MAH含量的增加,共混物中分散相形态从颗粒状和纤维状共存向全部颗粒状过渡,分散相尺寸变小,界面黏附力增强,HDPE的韧性得以明显改善。当HDPE/EVOH/POE-g-MAH为70:20:10时,三元共混物的冲击强度最高为60 kJ/m~2,是纯HDPE的4.3倍,拉伸强度保留率为92%。  相似文献   

9.
利用共聚焦拉曼成像技术研究了低密度聚乙烯(PE-LD)/乙烯-乙烯醇共聚物(EVOH)共混物中各相在压塑样品水平方向、深度方向和三维空间的分布情况,首次获得了PE-LD/EVOH共混物的三维相结构,并直观地将相区与共混物化学成分相对应。结果表明,PE-LD/EVOH共混物为不相容体系;当EVOH的质量分数为20%时,其作为分散相,以较规则的圆柱体形态分散于PE-LD基体中,圆柱直径尺寸在3~6μm范围内。加入马来酸酐接枝聚乙烯(PE-gMAH)作为相容剂后,共混物的相态结构发生显著变化,分散相形状由规则变为不规则,截面的平均尺寸减小到约2μm,这说明PE-g-MAH可显著增强PE-LD与EVOH两组分间的界面相容性。  相似文献   

10.
将不同配比的聚丙烯(PP)和乙烯-乙酸乙烯共聚物(EVA)进行共混,测试了共混物的拉伸强度和冲击强度;用差示扫描量热法研究了共混物的结晶性能;用扫描电镜(SEM)二次电子成像系统分析了试样的断口形貌,研究了EVA含量对共混物力学性能的影响。结果表明:EVA的加入提高了EVA/PP共混体系的韧性,同时降低了PP的结晶度。  相似文献   

11.
This work investigated the deformation and fracture behavior of polypropylene–ethylene vinyl alcohol (PP/EVOH) blends compatibilized with ionomer Zn2+. Uniaxial tensile tests and quasistatic fracture experiments were performed for neat PP and for 10 and 20 wt % EVOH blends with different ionomer contents. The addition of EVOH copolymer to PP led to an increase in the Young's modulus whereas the yield strength was decreased with the EVOH content as a consequence of the higher stiffness of EVOH and the poor interfacial adhesion between PP and EVOH, respectively. Furthermore, the incorporation of EVOH into PP promoted stable crack growth. Neat PP displayed nonlinear load‐displacement behavior with some amount of slow crack growth preceding unstable brittle fracture, whereas most PP/EVOH blends exhibited “pseudostable” fracture characterized by slow crack growth that could not be externally controlled. All blends exhibited lower resistance to crack initiation than PP but the fracture propagation resistance was significantly improved. For 10 wt % EVOH blends, the resistance to crack initiation was roughly constant with the ionomer content up to 5%, then it increased with the further addition of compatibilizer. Conversely, for 20 wt % EVOH blends, the resistance to crack initiation appeared to be independent of the ionomer content. The better resistance to crack initiation exhibited by the 10 wt % EVOH blends could be attributed to a higher level of compatibilization in these blends. By contrast, 20 wt % EVOH blends with ≤2% ionomer content showed completely stable crack growth. In addition, JR curves and valid plane strain fracture toughness values for these blends could also be determined. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1271–1279, 2005  相似文献   

12.
The effect of interface characteristics on the properties of three‐component polymer blends comprising PP/EVOH/mica and PP/EVOH/glass beads (GB) was investigated (polypropylene‐PP, ethylene‐vinylalcohol‐EVOH). The systems selected are based on the binary PP/EVOH immiscible blend representing a semi‐crystalline apolar polymer (PP) and a semi‐crystalline highly polar copolymer (EVOH), where PP serves as the matrix. A series of the binary and three‐component blends with varying compositions was chosen to study the effect of the molding procedure, i.e. compression versus injection molding. The structures observed by SEM analysis consisted of the filler particles engulfed by the EVOH phase, with some of the minor EVOH component dispersed within the PP matrix. The effects of silane treatment (GB/EVOH interface) and compatibilization, using a maleated‐PP compatibilizer (PP/EVOH interface), were studied in relation to the generated structured and properties. The compatibilizer was added in a unique procedure by which the encapsulated GB/EVOH structures were preserved. The characterization methods used included morphology by Scanning Electron Microscopy, thermal properties and crystallization behavior by Differential Scanning Calorimetry, mechanical properties by tensile testing, and dynamic characteristics by Dynamic Mechanical Thermal Analysis. The work has shown that structure‐performance relationships in the three‐component blends can be varied and controlled.  相似文献   

13.
Immiscible polymer blends are interesting multiphase host systems for fillers. Such systems exhibit, within a certain composition limits, either a separate dispersion of the two minor phases or a dispersion of encapsulated filler particles within the minor polymer phase. Both thermodynamic (e.g. interfacial tension) and kinetic (e.g. relative viscosity) considerations determine the morphology developed during the blending process. The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB), or fibers (GF), was investigated. The system studied was based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semicrystalline highly polar copolymer. Modification of the interfacial properties was obtained through using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. The compatibilizer was added in a procedure aimed to preserves the encapsulated EVOH/glass structure. Blends were prepared by melt extrusion compounding and specimens by injection molding. The morphology was characterized using scanning electron microscopy (SEM) and high resolution SEM (HRSEM), the shear viscosity by capillary rheometry and the thermal behavior using differential scanning calorimetry (DSC). The system studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfaces resulted in unique morphologies. The aminosilane glass surface treatment enhanced the encapsulation in the ternary [PP/EVOH]GB blends, resulting in an encapsulated morphology with no separtely dispersed EVOH particles. The addition of a MA‐g‐PP compatibilizer preserves the encapsulated morphology in the ternary blends with some finely dispersed EVOH particles and enhanced PP/EVOH interphase interactions. The viscosity of the binary and ternary blends was closely related to the blend's morphology and the level of shear rate. The treated glass surfaces showed increased viscosity compared to the cleaned glass surfaces in both GB and GF containing ternary blends. Both EVOH and glass serve as nucleating agents for the PP matrix, affecting its crystallization process but not its crystalline structure. The aminosilane glass surface treatment completely inhibited the EVOH crystallization process in the ternary blend. In summary, the structure of the multicomponent blends studied has a significant effect on their behavior as depicted by the rheological and thermal behavior. The structure‐performance relationships in the three‐component blends can be controlled and varied.  相似文献   

14.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The effect of a sodium ionomer (ion.Na+) on the compatibility of polypropylene (PP)/high‐barrier ethylene–vinyl alcohol copolymer (EVOH) blends was studied in terms of the thermal, mechanical, and optical properties and morphology. The rheological behavior, tensile tests, and morphology of the binary blends showed that the miscibility of EVOH with PP was very poor. The miscibility of the polymers improved with the ionomer addition. In general, the ion.Na+ concentration did not alter the thermal behavior of the blends, but it did improve the ductility of the injection‐molded specimens. Scanning electron micrographs displayed better adhesion between the PP and EVOH phases in the samples with the ionomer. The mechanical improvement was better in the film samples than in the injection‐molded samples. A 90/10 (w/w) PP/EVOH film with 5% ion.Na+ and an 80/20 (w/w) PP/EVOH film with 10% ion.Na+ presented better global properties than the other blends studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1763–1770, 2004  相似文献   

16.
The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB) or fibers (GF) was investigated. The systems studied were based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semi‐crystalline highly polar copolymer. The ternary systems studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfacial properties was done using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. Both glass fillers increased the dynamic modulus and decreased the damping of the neat polymers and of their binary blends, especially in the rubbery region. GF has a more profound effect on both the modulus and the damping. Glass surface treatments and compatibilization have only a marginal effect on the dynamic mechanical behavior of the ternary blends. Yet, compatibilization shifted the polymers' TgS to higher temperatures. Both glass fillers increased the elastic modulus of the binary blends, where GF performed better than GB as a reinforcing agent. GF slightly increased the strength of the binary blends while, GB reduced it. Both fillers reduced the ductility of the binary blends. The blends' mechanical properties were related to the morphology and their components' crystallinity. The compatibilizer increases both stiffness and strength and reduces deformability.  相似文献   

17.
采用丙烯酸接枝聚丙烯(PP-g-AA)、衣康酸接枝聚丙烯 (PP-g-ITA)、马来酸酐接枝聚丙烯 (PP-g-MAH)3种相容剂增容聚丙烯(PP)/乙烯-乙烯醇共聚物(EVOH)共混体系,研究了共混体系的相容性、热性能、力学性能和阻隔性能。红外光谱分析表明,相容性的改善源于相容剂与EVOH之间形成的酯键和氢键。扫描电镜显示,PP-g-AA、PP-g-ITA、PP-g-MAH的增容作用依次增强,共混体系中相容剂增容作用越强,分散相尺寸越小,界面结合越牢固。差示扫描量热分析发现,PP/EVOH增容共混体系中EVOH组分的结晶温度低于不含相容剂的共混体系EVOH组分的结晶温度,PP组分的结晶温度变化则相反。增容共混体系与不含相容剂的共混体系相比,拉伸强度提高了10 MPa,吸油率降幅达0.8 %。  相似文献   

18.
We prepared some blends of polypropylene (PP) and ethylene vinyl alcohol (EVOH) with and without a compatibilizer. As a new compatibilizer, we synthesized polypropylene grafted with itaconic acid (PP‐g‐IA) using Brabender mixing system. We investigated the morphological, thermal, rheological, and mechanical properties of a compatibilized blends (PP/EVOH/PP‐g‐IA) and not compatibilized blends (PP/EVOH). Our experiments showed that carboxylic acid groups in PP‐g‐IA and hydroxyl group in EVOH formed strong in situ hydrogen bond in the compatibilized blends, resulting in better morphological and mechanical properties of the compatibilized blends than those of not compatibilized blends. POLYM. ENG. SCI., 56:1240–1247, 2016. © 2016 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号