首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
结合模糊控制理论,从优化模糊控制器的角度出发,将论域伸缩因子和智能积分结合起来,设计开发了基于可变论域的智能积分模糊控制器。利用LPC2132 ARM嵌入式芯片作为模糊控制器的核心,LabVIEW搭建监测平台。并针对带有纯滞后的温度控制系统给出了仿真结果。仿真结果表明,对于带有纯滞后的系统,变论域智能积分模糊控制器能够很好地改善纯滞后系统的缺点,对于大延迟、时变、非线性的工业过程系统能够很好的控制效果,其控制效果优于常规的模糊控制器,有较高的工程实用价值。  相似文献   

2.
Learning and tuning fuzzy logic controllers through reinforcements   总被引:18,自引:0,他引:18  
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.  相似文献   

3.
It is well known the fact that the design of a fuzzy control system is based on the human expert experience and control engineer knowledge regarding the controlled plant behavior. As a direct consequence, a fuzzy control system can be considered as belonging to the class of intelligent expert systems. The tuning procedure of a fuzzy controller represents a quite difficult and meticulous task, being based on prior data regarding good knowledge of the controlled plant. The complexity of the tuning procedure increases with the number of the fuzzy linguistic variables and, consequently, of the fuzzy inference rules and thus, the tuning process becomes more difficult. The paper presents a new design strategy for such expert fuzzy system, which improves their performance without increasing the number of fuzzy linguistic variables. The novelty consists in extending the classic structure of the fuzzy inference core with an intelligent module, which tunes one of the control singletons, providing a significant simplification of the design and implementation procedure. The proposed strategy implements a logical, not physical, supplementation of the linguistic terms associated to the controller output. Therefore, a fuzzy rules set with a reduced number of linguistic terms is used to implement the expert control system. This logical supplementation is based on an intelligent algorithm which performs a shifting of only one of the control singletons (the singleton associated to the SMALL_ linguistic variable), its value becoming variable, a fact that allows an accurate control and a better performance for the expert control system. The logic of this intelligent algorithm is to initially provide a high controller output, followed by a slowdown of the control signal near to the operating set point. The main advantage of the proposed expert control strategy is its simplicity: a reduced number of linguistic terms, combined with an intelligent tuning of a single parameter, can provide results as accurate as other more complex available solutions involving tuning of several parameters (well described by the technical literature). Also, a simplification of the preliminary off-line tuning procedure is performed by using a reduced set of fuzzy rules. The generality of the proposed expert control strategy allows its use for any other controlled process.  相似文献   

4.
In this paper, a new intelligent robot motion control architecture – a highly accurate model-free fuzzy motion control- is proposed in order to achieve improved robot motion accuracy and dynamic performance. Its architecture combines a Mamdani fuzzy proportional (P) and a conventional integral (I) plus derivative (D) controller for the feedback part of the system, and a Takagi-Sugeno-Kang fuzzy controller for the feed-forward, nonlinear part. The fuzzy P + ID controller improves the performance of the nonlinear system, and the TSK fuzzy controller uses a TSK fuzzy inference system based on extended subtractive- clustering method which integrates information on joint angular displacement, velocity and acceleration for torque identification. The advantage of this kind of model-free control is that it uses the information directly from the input/output of the nonlinear system, without any complex robot model computation, in order to decrease the control system’s sensitivity to any dynamical uncertainty. Furthermore, parametric search for clustering parameters in extended subtractive clustering secures the high accuracy of the system identification. Consequently, this proposed model-free fuzzy motion control benefits from the advantages of two kinds of fuzzy system. It not only incorporates flexible design, good performance and simple conception but also ensures precise motion control and great robustness. Comparisons with other intelligent models and results from numerical studies on a 4-bar planar parallel mechanism show the effectiveness and competitiveness of the proposed control.  相似文献   

5.
The search for an intelligent group controller that can satisfy multi-criteria requirements of an elevator group control system has become a great challenge for researchers. This paper presents the development of an elevator group controller based on fuzzy logic framework with a self-tuning scheme. Instead of basing on predicted traffic patterns to initiate modifications in the control outputs produced, the proposed group controller utilizes average waiting time (AWT) as the measured performance criterion used to adjust the membership functions and to select appropriate fuzzy rule sets, for the generation of suitable control actions. By comparing the measured performance results with the ones desired, better adjustment of the controller can be achieved to further improve the controller's performance. Computer simulation was carried out for three different cases in three traffic peaks. The results showed considerable overall improvements in the performance criteria evaluated as compared to the performance of conventional group controllers.  相似文献   

6.
A new robust neuro-fuzzy controller for autonomous and intelligent robot manipulators in dynamic and partially known environments containing moving obstacles is presented. The navigation is based on a fuzzy technique for the idea of artificial potential fields (APFs) using analytic harmonic functions. Unlike the fuzzy technique, the development of APFs is computationally intensive. A computationally efficient processing scheme for fuzzy navigation to reasoning about obstacle avoidance using APF is described, namely, the intelligent dynamic motion planning. An integration of a robust controller and a modified Elman neural networks (MENNs) approximation-based computed-torque controller is proposed to deal with unmodeled bounded disturbances and/or unstructured unmodeled dynamics of the robot arm. The MENN weights are tuned online, with no off-line learning phase required. The stability of the overall closed-loop system, composed by the nonlinear robot dynamics and the robust neuro-fuzzy controller, is guaranteed by the Lyapunov theory. The purpose of the robust neuro-fuzzy controller is to generate the commands for the servo-systems of the robot so it may choose its way to its goal autonomously, while reacting in real-time to unexpected events. The proposed scheme has been successfully tested. The controller also demonstrates remarkable performance in adaptation to changes in manipulator dynamics. Sensor-based motion control is an essential feature for dealing with model uncertainties and unexpected obstacles in real-time world systems.  相似文献   

7.
A novel fuzzy‐neuron intelligent coordination control method for a unit power plant is proposed in this paper. Based on the complementarity between a fuzzy controller and a neuron model‐free controller, a fuzzy‐neuron compound control method for Single‐In‐Single‐Out (SISO) systems is presented to enhance the robustness and precision of the control system. In this new intelligent control system, the fuzzy logic controller is used to speed up the transient response, and the adaptive neuron controller is used to eliminate the steady state error of the system. For the multivariable control system, the multivariable controlled plant is decoupled statically, and then the fuzzy‐neuron intelligent controller is used in each input‐output path of the decoupled plant. To the complex unit power plant, the structure of this new intelligent coordination controller is very simple and the simulation test results show that good performances such as strong robustness and adaptability, etc. are obtained. One of the outstanding advantages is that the proposed method can separate the controller design procedure and control signals from the plant model. It can be used in practice very conveniently.  相似文献   

8.
交流励磁发电机智能模糊励磁控制研究   总被引:1,自引:0,他引:1  
彭泓  刘磊  陈立东 《计算机系统应用》2013,22(1):167-172,177
在深入分析和研究交流励磁发电机的基础上,结合模糊控制不依赖对象模型、控制迅速等优点,针对交流励磁发电机提出了一种带有智能模糊控制器的新颖解耦励磁控制方法.通过模糊控制理论建立了相应的励磁控制模型,并以双PWM变换器为基础设计了智能模糊励磁控制器;通过仿真分析验证了智能模糊励磁控制器提高了系统的运行性能,以及智能模糊控制方法的正确性和有效性.  相似文献   

9.
针对网络控制系统中普遍存在的时延问题,提出了一种将模糊自适应算法和Smith预估补偿算法与常规PID控制器相结合的智能控制策略。该方法充分利用了Smith预估控制算法对带时延系统的良好控制能力,同时利用模糊推理算法实现对PID参数的在线自整定,进一步改善PID控制器的性能。仿真结果表明,基于该智能控制器的网络控制系统克服了传统PID控制超调量大及常规Smith预估补偿过分依赖于被控对象精确数学模型的缺陷,可以有效降低时延对系统性能的不利影响,使被控对象具有良好的动、静态特性。  相似文献   

10.
This paper suggests an intelligent controller for an automated vehicle planning its own trajectory based on sensor and communication data. The intelligent controller is designed using the learning stochastic automata theory. Using the data received from on-board sensors, two automata (one for lateral actions, one for longitudinal actions) can learn the best possible action to avoid collisions. The system has the advantage of being able to work in unmodeled stochastic environments, unlike adaptive control methods or expert systems. Simulations for simultaneous lateral and longitudinal control of a vehicle provide encouraging results  相似文献   

11.
将Smith预估器和内模控制结构结合起来 ,利用模糊控制方法研究出一种智能控制器 ,能在一定的模型误差范围内得到良好的控制品质。主要控制量来源于模糊控制器 ,通过智能积分对模糊控制器不能消除的稳态误差进行克服 ,并对系统性能进行监测 ,使用模糊控制对控制量进行校正。经仿真研究发现 ,这种智能控制器在一定的模型误差范围内有很好的鲁棒性 ,稳态误差为 0。  相似文献   

12.
本文提出一种基于高斯函数网络的模糊温度控制器,给出了模糊神经网络控制模型和学习算法。通过自学习不断修正模糊控制器规则,使模糊控制器具有自学习和自适应能力。计算机仿真及温控结果表明,这种智能控制器具有良好的控制性能。  相似文献   

13.
冷连轧模糊反馈AGC系统的设计与仿真   总被引:5,自引:0,他引:5  
王焱  孙一康 《控制工程》2002,9(5):42-44
设计了一种模糊控制器,该控制器结构简单,参数调整方便,快捷,将其与PI调节器结合组成智能型复合控制器,并成功应用于冷轧带钢的厚度自动控制(AGC)系统中,仿真实验表明,该控制器的控制性能远优于常规的PID控制器,为冷轧带钢厚度精度的提高提供了一种新的尝试。  相似文献   

14.
时滞系统的自适应模糊控制器的研究   总被引:7,自引:0,他引:7  
利用模糊控制方法研究出一种自适应智能控制器,将Smith预估器和内模控制结构结 合起来,能在一定的模型误差范围内得到良好的控制品质.主要控制量来源于模糊控制器,通过智能积分对模糊控制器不能消除的稳定误差进行克服,并对系统性能进行监测,使用模糊控制对控制量进行校正.经仿真研究,这种智能控制器在一定的误差范围内有很好的鲁棒性,稳态误差为零.  相似文献   

15.
This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods.  相似文献   

16.
为了提高某机载雷达环境控制系统控制品质,设计了一种基于PID控制与模糊控制相结合的智能控制器。文章介绍了该智能控制器的基本原理、系统组成,详细论述了温度控制算法。该算法具有更大的灵活性、更快的响应速度、抗干扰性强和鲁棒性高的优点,特别适用于非线性、时变和大滞后的控制系统。试验表明,采用该算法的环境控制系统,具有良好的控制性能,对机载设备冷却或加热取得了满意的效果。  相似文献   

17.
模糊控制器的设计是模糊控制系统的核心,而模糊控制器设计的关键部分是模糊规则,模糊规则的好坏决定了模糊控制系统的控制效果.而一般模糊规则是通过专家经验获得的,存在很大的主观性的缺点,本文以智能悬臂梁结构为研究对象,设计了模糊控制器,改进了遗传算法,提出了使用改进遗传算法对模糊规则进行优化的方法,并给出了遗传编码、适应度函数的确定方法,最后利用Matlab/Simulink建立智能悬臂梁结构的仿真模型,对模糊规则优化前后的智能悬臂梁振动控制结果进行对比.仿真结果表明,优化后的模糊规则使智能悬臂梁的振动幅度显著缩小,而且振动衰减速度明显加快.  相似文献   

18.
一种新的模糊PID控制器的优化及其仿真研究   总被引:3,自引:1,他引:3  
该文提出了一种新的最优模糊PID控制器。该控制器由两部分组成,一部分是常规PID控制器,另一部分是在线模糊推理机构。在模糊推理机构中,引入了三个可调节因子Xp,Xj,和Xd,其作用是优化模糊推理结果,该模糊PID控制器用来控制智能人工腿中的一个直线电机,并已获得很好的控制效果。  相似文献   

19.
In this research paper, a mechatronics system such as a pan tilt platform (PTP) has been considered for motion control under intelligent controllers. A proportional-derivative (PD) controller is considered for comparison of results obtained from fuzzy and hybrid controllers. The trajectory following performance of the mechatronics system is found against these controllers. The results of simulations show that hybrid fuzzy controller reduce the tracking error effectively in lesser settling time. The intelligent controllers require knowledge base of error and derivative of error to compensate the PTP dynamics. The intelligent controllers have similar trends as the PD controllers and compensated both electrical and mechanical dynamics. The PD controller requires position measurement. The intelligent controllers have knowledge base consisting of position and velocity data. Thus intelligent controllers have position measurement along with knowledge base for position control system. The best results were achieved with hybrid fuzzy controllers. They meet the desired specifications.  相似文献   

20.
为了改善航空发动机高空模拟试车台(简称高空台)液压加载系统的控制性能,解决手动调节控制精度低且闭环控制快速性较差的问题,提出了一种将开环模糊控制与闭环PID控制相结合的智能复合控制方法。首先,结合高空台液压加载试验特点和设备特性,利用真实试验数据基于最小二乘系统辨识搭建了系统的分段线性模型。其次,使用频域法设计参数调度的PID控制器,解决了手动调节控制精度低的问题。最后,结合试验操作人员提供的经验知识和历史试验数据结论搭建了模糊开环控制器,设计控制器选择模块和积分补偿模块,将模糊开环控制器与闭环PID控制器相结合形成智能复合控制器。通过仿真验证得出,智能复合控制器的控制效果在精度上明显优于人工手动调节,在快速性上明显优于PID控制器,调节时间缩短了39%~87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号