首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The prohormone convertases (PCs) are processing enzymes that activate proproteins via cleavage at specific single or pairs of basic residues. The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) are primary sites of biosynthesis of several neuroendocrine hormone precursors, including provasopressin (pro-AVP), pro-oxytocin (pro-OT), and procorticotrophin-releasing hormone (pro-CRH), which require post-translational processing to yield active products. Using in situ hybridization, we observed PC1 and PC5 mRNAs in PVN and SON magnocellular neurons, while PC2 mRNA was observed in both magnocellular and parvocellular PVN neurons as well as magnocellular SON neurons. Similar to furin, PC7 mRNA was expressed throughout the PVN and SON, whereas PACE4 mRNA levels were undetectable. Both immunohistochemical and Western blot studies were performed to demonstrate the presence of PC proteins and forms in the PVN and SON. Using double-labeling in situ hybridization, we examined the cellular colocalization of each PC mRNA with pro-AVP, pro-OT, and pro-CRH mRNAs in PVN and SON. PC1 mRNA was colocalized with both AVP and OT mRNA in PVN and SON magnocellular neurons. All AVP, OT, and CRH neurons expressed PC2. In contrast, PC5 mRNA was colocalized only with OT mRNA. We examined the effects of adrenalectomy (ADX) on PVN PC mRNA levels. PC1 mRNA levels were increased selectively within CRH/AVP parvocellular neurons but were unchanged in PVN magnocellular AVP or OT neurons. These results established the anatomical organization of each convertase and proneuropeptide substrates in the PVN and SON and suggested potential roles for each enzyme under resting and stimulated conditions.  相似文献   

2.
Evidence exists for the localization of the newly identified estrogen receptor beta (ERbeta) within the rat paraventricular nucleus (PVN) and supraoptic nucleus (SON), regions which lack ERalpha. Presently, we investigate whether ERbeta-like-immunoreactivity (-ir) is found within cells of several major neuropeptide systems of these regions. Young adult Sprague-Dawley rats were ovariectomized (OVX), and 1 week later half of the animals received estradiol-17beta (E). Dual-label immunocytochemistry was performed on adjacent sections by using an ERbeta antibody, followed by an antibody to either oxytocin (OT), arginine-vasopressin (AVP), or corticotropin releasing hormone. Nuclear ERbeta-ir was identified within SON and retrochiasmatic SON, and in specific PVN subnuclei: medial parvicellular part, ventral and dorsal zones, dorsal and lateral parvicellular parts, and in the posterior magnocellular part, medial and lateral zones. However, the ERbeta-ir within magnocellular areas was noticeably less intense. OT-/ERbeta-ir colocalization was confirmed in neurons of the parvicellular subnuclei, in both OVX and OVX+E brains ( approximately 50% of OT and 25% of ERbeta-labeled cells between bregma -1.78 and -2.00). In contrast, few PVN parvicellular neurons contained both AVP- and ERbeta-ir. As well, very little overlap was observed in the distribution of cells containing corticotropin releasing hormone- or ERbeta-ir. In the SON, most nuclear ERbeta-ir colocalized with AVP-ir, whereas few OT-/ERbeta-ir dual-labeled cells were observed. These findings suggest that estrogen can directly modulate specific OT and AVP systems through an ERbeta-mediated mechanism, in a tissue-specific manner.  相似文献   

3.
The regulatory actions of estrogen on magnocellular oxytocin (OT) and vasopressin (VP) neurons of the paraventricular (PVN) and supraoptic (SON) nuclei are well documented. To date it is still debated whether the effect of estrogens is exerted directly or mediated by estrogen-sensitive interneurons. Previous immunocytochemical (ICC) and in situ hybridization (ISH) studies detected either low levels or absence of the classical estrogen receptor (ER-alpha) in the PVN and the SON of the rat. The present experiments using a combined ICC and ISH method were undertaken to examine the expression of the recently cloned beta form of ER (ER-beta) in OT- and VP-immunoreactive (IR) neuronal systems of the rat hypothalamus. The results demonstrate that the highest cellular levels of ER-beta messenger RNA (mRNA) in OT-IR neurons can be visualized in the caudal portion of the PVN and in an area ventro-medial to the central core of VP-IR cells. These neurons were previously shown to project caudally to the brain stem and the spinal cord to regulate autonomic functions. In addition, the whole rostro-caudal extent of the PVN and the SON contained OT-IR neurons that coexpressed variable levels of ER-beta mRNA. Similarly, the presence of ER-beta mRNA was seen in a large population of VP-IR paraventricular and supraoptic neurons. In the SON, somewhat stronger hybridization signal was detected in VP-IR neurons as compared with OT-IR neurons. Together, these findings provide strong support for the concept that the functions of OT- and VP-IR neurons in the PVN and the SON are regulated directly by estrogen and that the genomic effects of estrogens are mediated by ER-beta.  相似文献   

4.
An understanding of the functional significance of the newly identified estrogen receptor (ER beta) in the brain will require definition of its expression pattern and relationship to ER alpha. Using an antibody generated against the C-terminus of rat ER beta, we report the presence of ER beta immunoreactivity in the lateral septum, medial amygdala, hippocampus and paraventricular nucleus (PVN) of ovariectomized rats. Double labelling studies in the PVN revealed that approximately 35% of oxytocin neurons located principally in the medial and lateral parvocellular divisions of the caudal PVN were immunoreactive for ER beta while vasopressin, somatostatin and magnocellular oxytocin neurons exhibited no ER beta staining with this antibody. No ER alpha immunoreactive cells were identified in the caudal PVN. These observations provide direct evidence for the differential expression of ER sub-types within neurons and indicate that ER beta may be of physiological significance in the regulation of hypothalamic parvocellular oxytocin neurons by estrogen.  相似文献   

5.
Previous studies have implicated oxytocin (OT) in the control of surge-type PRL secretion in the pregnant and pseudopregnant rat. The present studies examined the relationship between mating-induced activation of OT neurons in the paraventricular (PVN), supraoptic (SON), and anterior commissural (ACN) nuclei and PRL secretion. Activity within OTergic neurons, as measured by increased c-fos expression, was examined immediately and 5 days following mating in ovariectomized, estrogen-plus-progesterone-treated rats at the time when nocturnal PRL surges are expressed (0600 h) and at an intersurge time (2400 h). Females received fifteen intromissions (15I), 15 mounts-without-intromission (MO), or no stimulation (homecage, HC) from a sexually experienced male. Receipt of 15I at 0600 h induced significantly higher numbers of OT immunoreactive (OT-IR) cells and FOS/OT-IR double-labeled cells in the parvocellular division of the PVN (PVNparv) and in the SON than did 15I at 2400 h. Numbers of OT-IR and FOS/OT-IR cells in the ACN and in the magnocellular compartment of the PVN (PVNmag) were not influenced by mating at either time. In contrast, acute PRL secretion induced within 5-30 min by 15I was not influenced by whether mating occurred at 1800 h (diurnal surge), 2400 h, or 0600 h, nor were plasma OT levels elevated during the 1 h following 15I or MO at these times. Examination of FOS-IR cells throughout the hypothalamus across the two times of day revealed previously unreported differences between 15I and control MO treatments in the PVN, SON, and the ventrolateral part of the arcuate nucleus (ARCvl). On day 5 post mating, numbers of OT-IR and FOS/OT-IR cells in the PVN, SON, and ACN were very low and were similar between 0600 h and 2400 h and between females that showed (15I) or did not show (MO) mating-induced PRL surges characteristic of pregnancy. The results of these studies demonstrate that intromissive but not mounts-only stimulation from males induces a rapid increase in OT-IR staining and OT neuron activation in the PVNparv and the SON. These mating-induced responses in OT neurons occurred within 1 h after mating only at 0600 h, suggesting a diurnal fluctuation in sensitivity to intromissive stimulation. Changes in OTergic function were not seen in response to mating at other times of day, nor at the time of the nocturnal PRL surge 5 days after mating. We conclude that OT activity induced by mating does not act to stimulate PRL secretion directly, but may be involved in the process(es) by which genitosensory stimulation initiates surge-type PRL secretion.  相似文献   

6.
The distribution of angiotensin-(1-7) immunoreactive neurons was compared to those of vasopressin-(VP) and oxytocin-(OT) immunoreactive (IR) neurons in the hypothalamus of adult (mRen-2d)27 transgenic hypertensive and Sprague-Dawley rats. In both strains, angiotensin (Ang)-(1-7)-IR cells were found in the supraoptic nucleus (SON), and in the anterior (ap-), medial (mp-), and lateral (lp-) parvocellular, and posterior magnocellular (pm-) subdivisions of the paraventricular (PVN) nucleus. Three-dimensional reconstructions showed that cells immunoreactive to Ang-(1-7) and VP were specifically co-distributed in the SON and in the pmPVN. Double-labeling neurons for both peptides revealed that both Ang-(1-7) and VP were colocalized in a subpopulation of neurons in the pmPVN and SON. In combination with previous studies, our results suggest that Ang-(1-7) and VP are colocalized, co-released and may have a combined action at a common target. In addition, the introduction of the mouse submandibular renin (mRen-2d) transgene into Sprague-Dawley rats does not appear to have altered the fundamental organization of hypothalamic peptide systems involved in fluid homeostasis.  相似文献   

7.
The adipose tissue-derived hormone leptin regulates body weight homeostasis by decreasing food intake and increasing energy expenditure. The weight-reducing action of leptin is thought to be mediated primarily by signal transduction through the leptin receptor (LR) in the hypothalamus. We have used immunohistochemistry to localize LR-immunoreactive (LR-IR) cells in the rat brain using an antiserum against a portion of the intracellular domain of LR that is common to all LR isoforms. The antiserum recognized the short and long isoforms of LR in transfected hematopoietic BaF3 cells. To examine the chemical nature of target cells for leptin, direct double-labeling immunofluorescence histochemistry was applied. The results show extensive distribution of LR-like immunoreactivity (LR-LI) in the brain with positively stained cells present, e.g., in the choroid plexus, cerebral cortex, hippocampus, thalamus, and hypothalamus. In the hypothalamus, strongly LR-IR neurons were present in the supraoptic nucleus (SON) and paraventricular nucleus (PVN), periventricular nucleus, arcuate nucleus, and lateral hypothalamus. Weaker LR-IR neurons were also demonstrated in the lateral and medial preoptic nuclei, suprachiasmatic nucleus, ventromedial and dorsomedial nuclei, and tuberomammillary nucleus. Confocal laser scanning microscopy showed LR-LI in the periphery of individual cells. In magnocellular neurons of the SON and PVN, LR-LI was demonstrated in vasopressin- and oxytocin-containing neurons. In parvocellular neurons of the PVN, LR-LI was demonstrated in many corticotropin-releasing hormone-containing neurons. LR-IR neurons were mainly seen in the ventromedial aspect of the arcuate nucleus, where LR-LI co-localized with neuropeptide Y. In the ventrolateral part of the arcuate nucleus, LR-LI was present in many large adrenocorticotropic hormone-IR proopiomelanocortin-containing neurons and in a few galanin-, neurotensin-, and growth hormone-releasing hormone-containing neurons. In the dorsomedial arcuate nucleus, few tyrosine hydroxylase (dopamine)-containing neurons were seen to have LR-LI. Melanin-concentrating hormone-containing neurons in the lateral hypothalamus had LR-LI. Based on the immunohistochemical results, possible interactions of leptin with brain mechanisms are discussed.  相似文献   

8.
Systemic administration of the cytokine IL-1 beta produces a significant release of ACTH into the plasma and activation of hypothalamic oxytocin (OT) and corticotropin releasing factor (CRF) cells. However, the mechanism(s) by which systemic IL-1 beta induces these responses is not clear. In the present study, we have investigated the proposal that catecholamine cells of the ventrolateral medulla (VLM) and nucleus of the solitary tract (NTS) can relay circulating IL-1 signals via a prostaglandin-dependent mechanism to effect the HPA axis responses in the rat. Intra-arterial administration of IL-1 beta (1 pg/kg) to otherwise untreated animals produced a prominent release of ACTH into the plasma, substantial c-fos expression in paraventricular medial parvocellular (mPVN) corticotropin releasing factor (CRF) cells, supraoptic (SON) and paraventricular nucleus (PVN) OT cells, area postrema cells, NTS and VLM catecholamine cells and cells of the central amygdala. Pretreatment with the prostaglandin synthesis inhibitor, indomethacin (10 mg/kg body weight ia) 15 min before IL-1 beta administration (1 pg/kg ia) significantly reduced plasma ACTH release and c-fos expression in PVN and SON OT cells and MPVN CRF cells, in addition, the area postrema, A1 and C1 catecholamine cell groups of the VLM and A2 and C2 catecholamine cell groups of the NTS, all exhibited concomitant reductions in c-fos expression. Conversely indomethacin administration did not alter the IL1 beta-induced expression of c-fos in the central amygdala. These data suggest that central pathways involved in the IL-1 beta-induced activation of the HPA axis and OT cells are, at least in part, dependent upon prostaglandin synthesis. It is proposed that neurons in the area postrema, NTS and VLM might mediate this IL-1 beta-induced activation of hypothalamic CRF and OT cells and release of ACTH into the plasma.  相似文献   

9.
The nonapeptide oxytocin (OT) is important for milk ejection during lactation, uterine contractility at parturition, and the onset of maternal behavior. Sequential exposure to estradiol (E2) and progesterone (P) followed by P withdrawal increases OT mRNA in the paraventricular nucleus (PVN), and to a lesser degree the supraoptic nucleus (SON), of the rat 48 hours after the P is removed. Although increases in PVN OT mRNA are not accompanied by changes in posterior pituitary OT peptide content, the PVN contains OT neurons that project to both the posterior pituitary (magnocellular group) and extra pituitary sites (parvocellular groups). Steroid-induced increases in OT mRNA occur in both the magnocellular and the parvocellular regions of the PVN. The latter are believed to contribute to CNS release of OT which may be important for certain behaviors including the onset of maternal behavior. The same steroid sequence that increases PVN OT mRNA also induces maternal behavior in virgin ovariectomized rats. Exposure of animals to E2 and P for 2 weeks resulted in the shortest latency to the onset of maternal behavior in ovariectomized rats, whereas exposure for 6 days was associated with a longer latency. In this study we questioned if the duration of E2 and P exposure prior to P withdrawal is an important regulator of PVN OT mRNA levels. We compared OT mRNA levels in the PVN of virgin ovariectomized rats administered no steroid or sequential E2 and P for 2 weeks versus 6 days. On day 1 animals received steroid-filled or empty capsules followed by P-filled or empty capsules on day 3. In one steroid-treated group, E2 and P were continued for 6 days and in the other group for 14 days prior to P removal. Animals were sacrificed 48 hours after P removal. Levels of OT mRNA were compared among 6 day and 2 week steroid-treated animals and sham-treated animals. The relative abundance of OT mRNA was significantly increased, P < 0.05, in animals receiving the 2-week, but not the 6-day, steroid treatment compared to sham-treated animals. Pituitary OT peptide content was not significantly different among the three groups. We conclude that the duration of steroid exposure may be an important regulator of the level of OT mRNA in the PVN of the rat.  相似文献   

10.
11.
Yawning was evoked by electrical or chemical stimulation in the paraventricular nucleus (PVN) of anesthetized, spontaneously breathing rats. To evaluate physiological aspects of yawning, we monitored polygraphic measures as follows; a coordinated motor pattern of yawning was assessed by monitoring breathing [intercostal electromyogram (EMG)], mouth opening (digastric EMG), and stretching of the trunk (back EMG). We also recorded blood pressure (BP), heart rate, and the electrocorticogram (ECoG) to evaluate autonomic function and arousal responses during yawning. A stereotyped yawning response was reproducibly evoked by electrical stimulation or microinjection of -glutamate or NOC-7, a nitric oxide (NO)-releasing compound, into the PVN. The stereotyped yawning response consisted of two sequential events, an initial response represented a depressor response and an arousal shift in the ECoG to lower voltage and faster rhythms. These initial changes were followed by a yawning behavior characterized by a single large inspiration with mouth opening and stretching of the trunk. A similar sequence of events occurred during spontaneous yawning; a fall in BP and ECoG arousal preceded a yawning behavior. An increase in the frequency of spontaneous yawns was also observed after microinjection of -glutamate or NOC-7 into the PVN. Intravenous administration of NG-monomethyl--arginine, an inhibitor of nitric oxide synthase (NOS), prevented the stereotyped yawning response evoked by chemical stimulation of the PVN. Histological examination revealed that effective sites for the yawning responses were located in the medial part of the rostral PVN, the site of parvocellular and magnocellular neurons. NADPH-diaphorase histochemistry showed the existence of NOS-containing cells in yawning-evoked sites of the PVN. In summary, the sequential events of yawning may be generated by NOS-containing parvocellular neurons in the medial part of the rostral PVN projecting to the lower brain stem.  相似文献   

12.
A rabbit antiserum was raised against the N-terminal fragment peptide, GEGLSS (Gly-Glu-Gly-Leu-Ser-Ser) of bovine neuropeptide AF (NPAF, A18Famide). NPAF is an octadecapeptide isolated from the bovine brain together with neuropeptide FF (NPFF). GEGLSS-like immunoreactivity was localized with immunofluorescence technique in colchicine-treated rats in neuronal cell bodies of the supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. A few neurons were also observed in the retrochiasmatic part of the SON. GEGLSS-like immunoreactivity was also localized to nerve terminals of the posterior pituitary. No GEGLSS-ir neuronal cell bodies were observed in the medial hypothalamus, in an area that contains NPFF-ir neurons. GEGLSS immunoreactivity was also seen in the fibers and terminals of nucleus of the solitary tract. We injected a retrograde tracer, fluorogold, to the posterior pituitary gland and visualized GEGLSS-ir neuronal cell bodies double-labeled with the tracer in SON, PVN, and SOR. The pituitary stalk transsection totally abolished the GEGLSS-ir structures from the posterior pituitary. Our results suggest that GEGLSS immunoreactivity in the rat brain has a more limited distribution than NPFF immunoreactivity. GEGLSS immunoreactivity was partially colocalized with arginine-vasopressin and oxytocin in neuronal cell bodies in the SON and PVN. Considering the fact that the known rat NPFF-NPAF precursor does not contain GEGLSS structure, the detected GEGLSS immunoreactivity may be derived from a previously unknown precursor.  相似文献   

13.
The distribution and regulation of galanin-R1 receptor (GAL-R1-R) mRNA has been studied in the anterior and mid-diencephalon by using in situ hybridization. Moreover, possible colocalization of GAL-R1-R mRNA and prepro-galanin or vasopressin mRNAs has been analyzed at the cellular level using double in situ hybridization methodology. Many nuclei in the hypothalamus expressed GAL-R1-R mRNA, including the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). Strong expression was also seen in the same sections in various areas outside of the diencephalon. The distribution patterns are similar to those described in earlier studies. Double labeling experiments showed GAL-R1-R mRNA in vasopressin neurons in the PVN and SON. Moreover, GAL-R1-R mRNA and prepro-galanin mRNA were colocalized in several hypothalamic nuclei. GAL-R1-R mRNA levels showed a high degree of plasticity. Thus, salt loading resulted in a marked increase in GAL-R1-R mRNA levels in the PVN and SON and a moderate decrease was seen during lactation. In contrast, hypophysectomy caused a decrease in GAL-R1-R mRNA levels. Differential effects of colchicine were recorded with a decrease of GAL-R1-R mRNA in the magnocellular hypothalamic neurons. After salt loading or during lactation, GAL-R1-R mRNA and prepro-galanin mRNA were regulated in parallel, whereas their levels changed in opposite directions after hypophysectomy and colchicine injection. In conclusion, GAL-R1-Rs are present in several hypothalamic nuclei, partly in neurons synthesizing galanin. The receptors are regulated in a specific fashion in the various nuclei, depending on the stimulus applied. The results suggest that the effect of galanin in the hypothalamus partly depends on the state of receptor expression.  相似文献   

14.
It has been well documented that the medial parvocellular subnucleus of the hypothalamic paraventricular nucleus (PVN) participates in immune regulation by releasing corticotrophin-releasing hormone (CRH), which triggers the hypothalamus-pituitary-adrenal axis, leading to immunosuppression. Little is known about other possible influences of PVN on immunomodulation. Evidence, however, has been accumulating recently, indicating possible involvement of other subnuclei of this nucleus. By using the c-fos technique, the present study investigated the neuronal groups of the PVN that were activated in response to intracerebroventricularly administered IL-1 beta. In addition to strong Fos expression in the dorsal part of medial parvocellular subnucleus of the PVN, where CRH neurons are located, two more neuronal groups were found to express Fos protein. One of which was the oxytocin-immunoreactive magnocellular neurons, mainly concentrated in the anterior and medial magnocellular subnuclei of the PVN. The magnocellular PVN subnuclei are known to project to, and release their hormones, in the posterior pituitary. Another group of Fos-immunoreactive neurons were found in the brainstem and spinal cord projecting area of the PVN. By combining retrograde tracing technique and Fos immunohistochemistry, it was proved that many of the spinal cord projecting PVN neurons were activated following IL-1 beta administration, through which the spinal cord sympathetic outflow might be regulated. The present study indicates that the hypothalamic PVN may serve as an integrative center for immunomodulation via three channels, i.e., the CRH and oxytocin neuroendocrinological and the PVN-spinal cord sympathetic neural channels.  相似文献   

15.
16.
A quantitative study regarding the age-related changes occurring in the nucleus and the somatic organelles of neurosecretory magnocellular neurons of the hypothalamo neurohypophyseal system (HNS) was carried out in the hamster at six age-points during animal life. The magnocellular cells of both parts of the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of male Syrian hamsters between 3 and 30 months of age were examined ultrastructurally. Cells of all age groups present the same morphological ultrastructure. Standard manual morphometric techniques are used to calculate the following parameters related directly or indirectly with cellular activity: nuclear area, nucleolar area, nuclear invagination index and volumetric fractions of some intracellular structures (Golgi apparatus, mitochondria, rough endoplasmic reticulum and lipofuscin). With respect to the cell nucleus, the parameters are not modified during aging. No significant differences in the volume density of subcellular components, except lipofuscin, were detected at the age groups studies. However, there is a positive linear trend among all parameters and age except for the rough endoplasmic reticulum. Our results suggest maintenance of the synthetic activity of the magnocellular neurons in the hamster during aging but in no case an increase in their metabolic activity.  相似文献   

17.
18.
In this study, the levels of kappa opioid receptor (kOR) mRNA were determined using in situ hybridization following two types of stress (i.p. injection of hypertonic saline or novelty). In addition, we examined the possibility that estrogen or androgen would modify kOR mRNA. Gonadectomized male rats treated with estrogen or dihydrotestosterone were sacrificed 45 min after spending 15 min in a novel open field, or 60 min following hypertonic saline injection. Two-way ANOVA revealed that estrogen and novelty increased the levels of kOR mRNA in the ventral zone of the medial parvocellular part of the paraventricular nucleus (PVN), but not in the lateral parvocellular part of the PVN, claustrum, nucleus accumbens or the nucleus of the lateral olfactory tract. Furthermore, novelty increased kOR mRNA in gonadectomized (GDX) and GDX rats treated with dihydrotestosterone (DHTP), but not in sham-operated or estrogen-treated animals. Taken together, these data indicate that kOR mRNA levels are under estrogenic control and up-regulated in a stressor specific fashion.  相似文献   

19.
Neuropeptide Y (NPY) produced in neurons in the arcuate nucleus and brain stem and released in the paraventricular nucleus (PVN) and surrounding areas is involved in stimulation of feeding in rats. We recently reported that gamma-aminobutyric acid (GABA) is coexpressed in a subpopulation of NPY neurons in the arcuate nucleus. To determine whether GABA is colocalized in NPY terminals in the PVN, the site of NPY action, light and electron microscopic double staining for NPY and GABA using pre- and postembedding immunolabeling was performed on rat brain sections. GABA was detected in NPY-immunopositive axons and axon terminals within both the parvocellular and magnocellular divisions of the PVN. These morphological findings suggested a NPY-GABA interaction in the hypothalamic control of feeding. Therefore, the effects of muscimol (MUS), a GABA(A) receptor agonist, on NPY-induced food intake were examined in sated rats. When injected intracerebroventricularly, both NPY and MUS elicited dose-dependent feeding responses that were blocked by the administration of 1229U91 (a putative Y1 receptor antagonist) or bicuculline (a GABA(A) receptor antagonist), respectively. Coadministration of NPY and MUS intracerebroventricularly amplified the feeding response over that evoked by NPY or MUS alone. Similarly, microinjection of either NPY or MUS into the PVN stimulated food intake in a dose-related fashion, and coinjection elicited a significantly higher response than that evoked by either individual treatment. These results suggest that GABA and NPY may coact through distinct receptors and second messenger systems in the PVN to augment food intake.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号