首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaginocervical stimulation received either during mating or by artificial mechanical means has been shown to induce FOS expression in medial amygdala, preoptic area, hypothalamus, and midbrain of female rats. While mating-induced increases in FOS-like immunoreactivity (FOS-IR) have been shown to require intromissive stimulation from males, the pattern of FOS-IR in animals receiving numbers of intromissions across a range relevant to the induction of the prolactin surges of early pregnancy has not been explored. Experiment 1 examined brain FOS-IR following 15 mounts without intromission or 5, 10, or 15 intromissions in ovariectomized females treated with estrogen and progesterone; these treatments are known to be less than or more than sufficient to trigger prolactin surges in cycling females. FOS was expressed in a graded fashion in the medial amygdala with respect to the numbers of intromissions received and in an all-or-nothing manner in preoptic area, bed nucleus of the stria terminalis, and ventromedial nucleus of the hypothalamus. In experiment 2, 15 intromissions induced expression of another immediate-early gene, egr-1, in each of these same areas as well as in a second division of the bed nucleus of the stria terminalis and in the paraventricular nucleus of the hypothalamus. These studies demonstrate that mating is differentially effective in inducing FOS expression in responsive brain areas and point to the medial amygdala as a site in which summation of intromissive stimulation may occur. Furthermore, the induction of EGR-1 may be a more sensitive marker for mating-induced neural activation in these areas than is FOS.  相似文献   

2.
The regulatory actions of estrogen on magnocellular oxytocin (OT) and vasopressin (VP) neurons of the paraventricular (PVN) and supraoptic (SON) nuclei are well documented. To date it is still debated whether the effect of estrogens is exerted directly or mediated by estrogen-sensitive interneurons. Previous immunocytochemical (ICC) and in situ hybridization (ISH) studies detected either low levels or absence of the classical estrogen receptor (ER-alpha) in the PVN and the SON of the rat. The present experiments using a combined ICC and ISH method were undertaken to examine the expression of the recently cloned beta form of ER (ER-beta) in OT- and VP-immunoreactive (IR) neuronal systems of the rat hypothalamus. The results demonstrate that the highest cellular levels of ER-beta messenger RNA (mRNA) in OT-IR neurons can be visualized in the caudal portion of the PVN and in an area ventro-medial to the central core of VP-IR cells. These neurons were previously shown to project caudally to the brain stem and the spinal cord to regulate autonomic functions. In addition, the whole rostro-caudal extent of the PVN and the SON contained OT-IR neurons that coexpressed variable levels of ER-beta mRNA. Similarly, the presence of ER-beta mRNA was seen in a large population of VP-IR paraventricular and supraoptic neurons. In the SON, somewhat stronger hybridization signal was detected in VP-IR neurons as compared with OT-IR neurons. Together, these findings provide strong support for the concept that the functions of OT- and VP-IR neurons in the PVN and the SON are regulated directly by estrogen and that the genomic effects of estrogens are mediated by ER-beta.  相似文献   

3.
The prohormone convertases (PCs) are processing enzymes that activate proproteins via cleavage at specific single or pairs of basic residues. The hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON) are primary sites of biosynthesis of several neuroendocrine hormone precursors, including provasopressin (pro-AVP), pro-oxytocin (pro-OT), and procorticotrophin-releasing hormone (pro-CRH), which require post-translational processing to yield active products. Using in situ hybridization, we observed PC1 and PC5 mRNAs in PVN and SON magnocellular neurons, while PC2 mRNA was observed in both magnocellular and parvocellular PVN neurons as well as magnocellular SON neurons. Similar to furin, PC7 mRNA was expressed throughout the PVN and SON, whereas PACE4 mRNA levels were undetectable. Both immunohistochemical and Western blot studies were performed to demonstrate the presence of PC proteins and forms in the PVN and SON. Using double-labeling in situ hybridization, we examined the cellular colocalization of each PC mRNA with pro-AVP, pro-OT, and pro-CRH mRNAs in PVN and SON. PC1 mRNA was colocalized with both AVP and OT mRNA in PVN and SON magnocellular neurons. All AVP, OT, and CRH neurons expressed PC2. In contrast, PC5 mRNA was colocalized only with OT mRNA. We examined the effects of adrenalectomy (ADX) on PVN PC mRNA levels. PC1 mRNA levels were increased selectively within CRH/AVP parvocellular neurons but were unchanged in PVN magnocellular AVP or OT neurons. These results established the anatomical organization of each convertase and proneuropeptide substrates in the PVN and SON and suggested potential roles for each enzyme under resting and stimulated conditions.  相似文献   

4.
The nonapeptide oxytocin (OT) is important for uterine contractility at parturition, milk ejection during lactation, and the induction of maternal behavior. OT messenger ribonucleic acid (mRNA) levels increase in the paraventricular and supraoptic nuclei (PVN and SON) of late pregnant and lactating rats and are modulated by the steroid milieu that accompanies these states. Specifically, sequential exposure to estradiol (E2) and progesterone (P) followed by P withdrawal 48 hrs prior to sacrifice increases PVN, and to a lesser but significant degree, SON OT mRNA. To better define the time course of induction of OT mRNA levels following P withdrawal, ovariectomized Sprague-Dawley rats were treated with empty or steroid-filled capsules. On day 1, animals received an E2-filled or empty capsule, followed by P-filled or empty capsules on day 3. On day 14, P-filled or empty capsules were removed and animals were sacrificed 24, 36, or 48 hrs later. The hypothalamic PVN were analyzed for OT mRNA by in situ hybridization histochemistry. Significant differences in PVN OT mRNA were found among the groups (P<0.0001, Kruskal-Wallis). Animals in the 48 hr (P=0.007) and 36 hr (P=0.005), but not the 24 hr, steroid-treated groups had significantly increased OT mRNA relative to their respective sham-treated cohorts (Mann-Whitney U test). The relative abundance of PVN OT mRNA differed among the steroid-treated groups (Kruskal-Wallis, P<0.0003), with highest levels at 48 hr. We conclude that increases in PVN OT mRNA occur by 36 hrs, and are highest at 48 hrs, after P withdrawal in the E2-primed rat. Future studies will determine if OT-mediated changes in behavior or physiology that surround parturition are related to these changes in OT mRNA.  相似文献   

5.
We determined whether fragmentation of genomic DNA, one of the hallmarks of apoptosis, occurs during structural luteolysis in cycling rats. Corpora lutea (CL) were collected from rats at each estrous cycle stage (1800 h), and fragmented DNA was extracted. Only CL from rats at the proestrous stage showed distinct DNA fragmentation. To determine the period of occurrence of DNA fragmentation, CL were collected at several points between 1200 h on the day of proestrus and 0600 h on the day of estrus. Distinct DNA fragmentation was observed from 1800 h (proestrus) to 2400 h (proestrus), and the extent was significantly lower at 0600 h (estrus). It is known that prolactin (PRL) induces structural luteolysis in rats. To examine the role of PRL in luteal DNA fragmentation, 2-bromo-alpha-ergocryptine (BE) was used to suppress the PRL surge on the day of proestrus. CL collected at 1800 h from BE-treated rats did not show distinct DNA fragmentation, and PRL injection offset the effect of BE. Histochemical analysis with a 3'-end labeling technique confirmed the occurrence of DNA fragmentation in luteal tissue. These results suggest that apoptotic cell death occurs during PRL-induced structural luteolysis.  相似文献   

6.
Evidence exists for the localization of the newly identified estrogen receptor beta (ERbeta) within the rat paraventricular nucleus (PVN) and supraoptic nucleus (SON), regions which lack ERalpha. Presently, we investigate whether ERbeta-like-immunoreactivity (-ir) is found within cells of several major neuropeptide systems of these regions. Young adult Sprague-Dawley rats were ovariectomized (OVX), and 1 week later half of the animals received estradiol-17beta (E). Dual-label immunocytochemistry was performed on adjacent sections by using an ERbeta antibody, followed by an antibody to either oxytocin (OT), arginine-vasopressin (AVP), or corticotropin releasing hormone. Nuclear ERbeta-ir was identified within SON and retrochiasmatic SON, and in specific PVN subnuclei: medial parvicellular part, ventral and dorsal zones, dorsal and lateral parvicellular parts, and in the posterior magnocellular part, medial and lateral zones. However, the ERbeta-ir within magnocellular areas was noticeably less intense. OT-/ERbeta-ir colocalization was confirmed in neurons of the parvicellular subnuclei, in both OVX and OVX+E brains ( approximately 50% of OT and 25% of ERbeta-labeled cells between bregma -1.78 and -2.00). In contrast, few PVN parvicellular neurons contained both AVP- and ERbeta-ir. As well, very little overlap was observed in the distribution of cells containing corticotropin releasing hormone- or ERbeta-ir. In the SON, most nuclear ERbeta-ir colocalized with AVP-ir, whereas few OT-/ERbeta-ir dual-labeled cells were observed. These findings suggest that estrogen can directly modulate specific OT and AVP systems through an ERbeta-mediated mechanism, in a tissue-specific manner.  相似文献   

7.
Stress mediators, CRF-41 and vasopressin known to be synthesized in, and released from the parvocellular neurosecretory neurons of the hypothalamic paraventricular nucleus (PVN) are essential to release adrenocorticotropin (ACTH) in response to stress. In addition, suckling-induced prolactin (PRL) release also depends on the integrity of the PVN. In the present study, ether stress-induced adrenocorticotrop hormone (ACTH) and prolactin (PRL) release was studied 2, 5 and 42 days after placing lesions in the hypothalamic paraventricular nucleus (PVN) of male rats. Ether-induced ACTH secretion was strongly inhibited 2 and 5 days after lesions whereas 6 weeks later the lesion induced inhibition was fading. In contrast, PVN lesion failed to inhibit ether-induced PRL release at any time studied. The results suggest that contrary to previous suggestions the peptidergic neurons essential for stress-induced PRL release are outside the PVN.  相似文献   

8.
The nonapeptide oxytocin (OT) is important for milk ejection during lactation, uterine contractility at parturition, and the onset of maternal behavior. Sequential exposure to estradiol (E2) and progesterone (P) followed by P withdrawal increases OT mRNA in the paraventricular nucleus (PVN), and to a lesser degree the supraoptic nucleus (SON), of the rat 48 hours after the P is removed. Although increases in PVN OT mRNA are not accompanied by changes in posterior pituitary OT peptide content, the PVN contains OT neurons that project to both the posterior pituitary (magnocellular group) and extra pituitary sites (parvocellular groups). Steroid-induced increases in OT mRNA occur in both the magnocellular and the parvocellular regions of the PVN. The latter are believed to contribute to CNS release of OT which may be important for certain behaviors including the onset of maternal behavior. The same steroid sequence that increases PVN OT mRNA also induces maternal behavior in virgin ovariectomized rats. Exposure of animals to E2 and P for 2 weeks resulted in the shortest latency to the onset of maternal behavior in ovariectomized rats, whereas exposure for 6 days was associated with a longer latency. In this study we questioned if the duration of E2 and P exposure prior to P withdrawal is an important regulator of PVN OT mRNA levels. We compared OT mRNA levels in the PVN of virgin ovariectomized rats administered no steroid or sequential E2 and P for 2 weeks versus 6 days. On day 1 animals received steroid-filled or empty capsules followed by P-filled or empty capsules on day 3. In one steroid-treated group, E2 and P were continued for 6 days and in the other group for 14 days prior to P removal. Animals were sacrificed 48 hours after P removal. Levels of OT mRNA were compared among 6 day and 2 week steroid-treated animals and sham-treated animals. The relative abundance of OT mRNA was significantly increased, P < 0.05, in animals receiving the 2-week, but not the 6-day, steroid treatment compared to sham-treated animals. Pituitary OT peptide content was not significantly different among the three groups. We conclude that the duration of steroid exposure may be an important regulator of the level of OT mRNA in the PVN of the rat.  相似文献   

9.
Rat and mouse hypothalami from postnatal animals containing highly differentiated neurones survive very well in long-term (>15 days in vitro, DIV) stationary organotypic cultures. Magnocellular oxytocin (OT) and vasopressin (VP) neurones are present in identifiable paraventricular (PVN), supraoptic (SON) and accessory (ACC) nuclei in these cultures. After 15 DIV in standard medium immunocytochemistry revealed 427 +/- 63 OT cells and 217 +/- 27 VP cells per cultured rat hypothalamus, and 380 +/- 72 OT cells and 622 +/- 91 VP cells per cultured mouse hypothalamus. Following a 7-day adaptation period in standard culture medium containing serum, the rat slice-explants survived very well after subsequent transfer to defined, serum- free media (SFM) for an additional 8 days. The number of OT cells surviving in SFM was 612 +/- 147 OT cells per cultured rat hypothalamus. Only 0.5% of the magnocellular OT and VP neurones in the cultures appeared to express both peptides. Experiments on c-fos gene expression in these cultures showed that while only 12% of the magnocellular OT and VP neurones contained barely detectable Fos protein in their nuclei under control conditions, potassium depolarization of these cultures for 3 h produced intense c-fos expression in 87-91% of these cells. Thus, magnocellular neurones in these cultures are sufficiently stable and responsive to permit long-term physiological and gene expression studies to be done under defined media conditions.  相似文献   

10.
11.
Systemic administration of the cytokine IL-1 beta produces a significant release of ACTH into the plasma and activation of hypothalamic oxytocin (OT) and corticotropin releasing factor (CRF) cells. However, the mechanism(s) by which systemic IL-1 beta induces these responses is not clear. In the present study, we have investigated the proposal that catecholamine cells of the ventrolateral medulla (VLM) and nucleus of the solitary tract (NTS) can relay circulating IL-1 signals via a prostaglandin-dependent mechanism to effect the HPA axis responses in the rat. Intra-arterial administration of IL-1 beta (1 pg/kg) to otherwise untreated animals produced a prominent release of ACTH into the plasma, substantial c-fos expression in paraventricular medial parvocellular (mPVN) corticotropin releasing factor (CRF) cells, supraoptic (SON) and paraventricular nucleus (PVN) OT cells, area postrema cells, NTS and VLM catecholamine cells and cells of the central amygdala. Pretreatment with the prostaglandin synthesis inhibitor, indomethacin (10 mg/kg body weight ia) 15 min before IL-1 beta administration (1 pg/kg ia) significantly reduced plasma ACTH release and c-fos expression in PVN and SON OT cells and MPVN CRF cells, in addition, the area postrema, A1 and C1 catecholamine cell groups of the VLM and A2 and C2 catecholamine cell groups of the NTS, all exhibited concomitant reductions in c-fos expression. Conversely indomethacin administration did not alter the IL1 beta-induced expression of c-fos in the central amygdala. These data suggest that central pathways involved in the IL-1 beta-induced activation of the HPA axis and OT cells are, at least in part, dependent upon prostaglandin synthesis. It is proposed that neurons in the area postrema, NTS and VLM might mediate this IL-1 beta-induced activation of hypothalamic CRF and OT cells and release of ACTH into the plasma.  相似文献   

12.
OBJECTIVE: Infusion of GH secretagogues appears to be a novel endocrine approach to reverse the catabolic state of critical illness, through amplification of the endogenously blunted GH secretion associated with a substantial IGF-I rise. Here we report the dynamic characteristics of spontaneous nightly TSH and PRL secretion during prolonged critical illness, together with the concomitant effects exerted by the administration of GH-secretagogues, GH-releasing hormone (GHRH) and GH-releasing peptide-2 (GHRP-2) in particular, on night-time TSH and PRL secretion. PATIENTS AND DESIGN: Twenty-six critically ill adults (mean +/- SEM age: 63 +/- 2 years) were studied during two consecutive nights (2100-0600 h). According to a weighed randomization, they received 1 of 4 combinations of infusions, within a randomized, cross-over design for each combination: placebo (one night) and GHRH (the next night) (n = 4); placebo and GHRP-2 (n = 10); GHRH and GHRP-2 (n = 6); GHRP-2 and GHRH + GHRP-2 (n = 6). Peptide infusions (duration 21 hours) were started after a bolus of 1 microgram/kg at 0900 h and infused (1 microgram/kg/h) until 0600 h. MEASUREMENTS: Serum concentrations of TSH and PRL were determined by IRMA every 20 minutes and T4, T3 and rT3 by RIA at 2100 h and 0600 h in each study night. Hormone secretion was quantified using deconvolution analysis. RESULTS: During prolonged critical illness, mean night-time serum concentrations of TSH (1.25 +/- 0.42 mlU/l) and PRL (9.4 +/- 0.9 micrograms/l) were low-normal. However, the proportion of TSH and PRL that was released in a pulsatile fashion was low (32 +/- 6% and 16 +/- 2.6%) and no nocturnal TSH or PRL surges were observed. The serum levels of T3 (0.64 +/- 0.06 nmol/l) were low and were positively related to the number of TSH bursts (R2 = 0.32; P = 0.03) and to the log of pulsatile TSH production (R2 = 0.34; P = 0.03). GHRP-2 infusion further reduced the proportion of TSH released in a pulsatile fashion to half that during placebo infusion (P = 0.02), without altering mean TSH levels. GHRH infusion increased mean TSH levels and pulsatile TSH production, 2-fold compared to placebo (P = 0.03) and 3-fold compared to GHRP-2 (P = 0.008). The addition of GHRP-2 to GHRH infusion abolished the stimulatory effect of GHRH on pulsatile TSH secretion. GHRP-2 infusion induced a small increase in mean PRL levels (21%; P = 0.02) and basal PRL secretion rate (49%; P = 0.02) compared to placebo, as did GHRH and GHRH + GHRP-2. CONCLUSIONS: The characterization of the specific pattern of anterior pituitary function during prolonged critical illness is herewith extended to the dynamics of TSH and PRL secretion: mean serum levels are low-normal, no noctumal surge is observed and the pulsatile fractions of TSH and PRL release are reduced, as was shown previously for GH. Low circulating thyroid hormone levels appear positively correlated with the reduced pulsatile TSH secretion, suggesting that they have, at least in part, a neuroendocrine origin. Finally, the opposite effects of different GH-secretagogues on TSH secretion further delineate particular linkages between the somatotrophic and thyrotrophic axes during critical illness.  相似文献   

13.
Male prairie voles (Microtus ochrogaster) form a pair bond with a female partner after mating, and this behavior is regulated by the neuropeptide vasopressin (AVP). The authors report that AVP in the lateral septum is important for pair bond formation. Administration of an AVP receptor antagonist in the lateral septum blocked mating-induced pair bonding, whereas administration of AVP induced this behavior in the absence of mating. In addition, administration of an oxytocin (OT) receptor antagonist in the lateral septum also blocked pair bond formation induced by either mating or AVP administration, suggesting that the OT receptor blockade may have interfered with the AVP regulation of behavior. Together, these data provide evidence suggesting that AVP in the lateral septum regulates pair bond formation in male prairie voles and that this process requires access to both AVP and OT receptors. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Five healthy men 25-38 years old were subjected to simultaneous composite intravenous stimulation tests of insulin hypoglycemia (0.1 U/kg), thyrotropin-releasing hormone (TRH, 100 mug), and luteinizing hormone-releasing hormone (LHRH, 50 mug) at weekly intervals to study the circadian responsiveness of the hypothalamic-adenohypophyseal axis at 0600, 1200, 1800, and 0000 hours. Blood sugar (BS), LH, follicle-stimulating hormone, TSH, prolactin, cortisol (C), growth hormone, and testosterone (T) levels were estimated before and after the administration of drugs. Comparisons were made between basal and delta values (difference between basal and peak or nadir levels) at different tests. Significant circadian variations in BS, GH, C, and, to a lesser extent PRL, responses were observed 0600 h basal and delta BS values were the lowest, delta BS was highest at 0000 h accompanied by maximal hypoglycemic symptoms; the delta values of both C and GH were significantly higher at 0600 h and 0000 h; highest mean delta PRL was observed at 0600; at 1800 h the basal plasma PRL level was maximum but the delta PRL was lowest. Plasma TSH, LH, and FSH responses did not show significant circadian variations. These results suggest that circadian variations are evident when stimuli act through central or hypothalamic mechanisms; however, direct stimulation of the adenohypophysis resulted in indentical responses at different periods tested.  相似文献   

15.
Adrenocorticotropic hormone (ACTH) secretion from the anterior pituitary is predominantly regulated by corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) synthesized in neurons of the paraventricular nucleus (PVN) of the hypothalamus. Secretion of ACTH occurs in pulsatile bursts. To explore the relationship between hypothalamic control and the pulsatile pattern of ACTH secretion, we measured ACTH in 2 min blood samples over 4 h in rats with intact and lesioned PVN during hypovolemic-stress or control conditions and also measured median eminence (ME) levels of CRH, AVP, and oxytocin (OT). Mean plasma ACTH was highest in the sham lesioned-hypovolemic group, lowest in the sham lesioned-control group and intermediate in the two PVN-lesioned groups. CRH in the ME was negligible in the lesioned animals and correlated with OT and AVP. Pulsatile secretion was observed despite PVN ablation. Visual inspection of composite time series suggested different temporal patterns of ACTH secretion. Principal components analysis of the individual ACTH time series revealed three significant eigenvectors which correlated differentially with the three treatment groups. Neither lesioned group had the steep rise over 10 min seen in plasma ACTH in the non-lesioned groups. Delayed ACTH rise after 30-60 min occurred in all but the sham control group. Our data suggest that CRH is responsible for immediate secretion of ACTH in response to hypovolemic stress and that regulators from non-PVN sites may be responsible for more delayed secretion of ACTH in this setting. The persistence of ME AVP and OT levels in the face of > 90% reduction in ME CRH levels leaves open the question of a role for one or both of these peptides in the delayed ACTH response following stress onset and in the generation of pulsatile ACTH secretory bursts.  相似文献   

16.
The luteotropic stimuli necessary to transform the corpus luteum of the estrous cycle into a corpus luteum of psuedopregnancy on the morning of diestrus-2 (Day 2), as reflected by a dramatic divergence in progesterone secretion, were studied (Day 1 was taken as the first day of diestrus of pseudopregnancy). The requirement of prolactin (PRL) as a luteotropic stimulus was determined by inhibiting the diurnal and nocturnal PRL surges that occur immediately before and during the divergence in progesterone. Following cervical stimulation, 1 mg of 2-Br-alpha-ergocryptine (EC) was injected at 1100 and 2300 h on Day 1 (lights on 0600-1800 h), and the animals were decapitated at 2-4 h intervals from 1100 h on Day 1 to 1700 h on Day 2. In the control animals, the PRL surges on Day 1 and Day 2 were associated with an increase in progesterone secretion on Day 2. However, the regimen of EC treatment resulted in an inhibition of PRL surges, prolactin remaining at baseline values from 1100 h on Day 1 to 1700 h on Day 2. The inhibition of PRL secretion was associated with a fall in progesterone concentration to reach baseline values by 1700h on Day 2. Furthermore, a group of animals similarly treated with EC returned to vaginal estrus 2 days later. LH concentrations did not differ in control and EC-treated animals. The effect of EC on corpus luteum function could be completely reversed by the simultaneous administration of PRL. In addition, if PRL was administered at 1100 h and 2300 h on diestrus-1 of the estrous cycle, in an attempt to mimic the surges os pseudopregnancy, regression of the corpora lutea did not occur. Progesterone levels increased to reach values comparable to those observed in pseudopregnancy on diestrus-2. The role of LH was studied by administering a dose of LH antiserum at 110 and 2300 h on Day 1 of pseudopregnancy. This treatment failed to inhibit the increase in progesterone observed on Day 2. These results demonstrate that the surges of plasma PRL initiated by cervical stimulation are responsible for transforming a corpus luteum of the estrous cycle into a corpus luteum of pseudopregnancy, as reflected by an increase in progesterone secretion of Day 2. LH seems to have a minor role in maintaining corpus luteum function beyond that observed during the estrous cycle.  相似文献   

17.
18.
Studies were performed on the central antidiuretic actions via the tachykinin NK-3 receptor in the rat hypothalamic paraventricular nucleus (PVN). Microinjections of the selective tachykinin NK-3 receptor agonist senktide (2-200 pmol) into the PVN resulted in prolonged inhibition of urine output in water-loaded rats, its effect being dose-dependent. The antidiuretic action of senktide was blocked by pretreatment with the vasopressin V2 receptor antagonist OPC-31260 (1 mg/kg, i.v.), but not by microinjection of the angiotensin II AT-1 receptor antagonist losartan (1 nmol) into the PVN. NK-3 receptor mRNA was strongly detected in the magnocellular part of the PVN and the supraoptic nucleus (SON) of the hypothalamus as detected by in situ hybridization histochemistry. Moreover, [3H]senktide binding sites were also detected in the PVN and the SON by receptor autoradiography. These findings suggest that NK-3 receptors in the PVN may be involved in water regulation by stimulation of vasopressin secretion from the posterior pituitary gland, and that vasopressin caused water reabsorbtion via the kidney V2 receptor.  相似文献   

19.
The effect of thyrotropin-releasing hormone (TRH; 200 ng i.c.v.) on oxytocin (OT), vasopressin (AVP) and prolactin (PRL) release was estimated in female Wistar rats during midlactation. The hypothalamo-neurohypophysial radioimmunoassayed OT and AVP storage as well as blood plasma level of both neurohypophysial hormones and PRL in females suckled or not suckled have been studied. I.c.v. administration of TRH increased AVP content both in the hypothalamus and neurohypophysis of suckled females; however, plasma AVP level did not change. TRH increased the hypothalamic as well as neurohypophysial OT content during suckling. Simultaneously, TRH inhibited OT release into the blood plasma. On the contrary, in not suckled females TRH increased OT plasma concentration. I.c.v. TRH raised the PRL concentration in plasma of lactating but, at the moment, not suckled females. On the contrary, i.c.v. TRH injection into females just suckled was followed by a decrease in PRL plasma level. TRH probably acts in the central nervous system as an inhibitory neuromodulating factor for the vasopressin release. Also, it cannot be excluded that TRH--otherwise known to enhance the PRL release--suppresses the oxytocin-prolactin positive feedback mechanism when activated temporarily by suckling.  相似文献   

20.
The distribution of angiotensin-(1-7) immunoreactive neurons was compared to those of vasopressin-(VP) and oxytocin-(OT) immunoreactive (IR) neurons in the hypothalamus of adult (mRen-2d)27 transgenic hypertensive and Sprague-Dawley rats. In both strains, angiotensin (Ang)-(1-7)-IR cells were found in the supraoptic nucleus (SON), and in the anterior (ap-), medial (mp-), and lateral (lp-) parvocellular, and posterior magnocellular (pm-) subdivisions of the paraventricular (PVN) nucleus. Three-dimensional reconstructions showed that cells immunoreactive to Ang-(1-7) and VP were specifically co-distributed in the SON and in the pmPVN. Double-labeling neurons for both peptides revealed that both Ang-(1-7) and VP were colocalized in a subpopulation of neurons in the pmPVN and SON. In combination with previous studies, our results suggest that Ang-(1-7) and VP are colocalized, co-released and may have a combined action at a common target. In addition, the introduction of the mouse submandibular renin (mRen-2d) transgene into Sprague-Dawley rats does not appear to have altered the fundamental organization of hypothalamic peptide systems involved in fluid homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号