首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
碳捕集电厂的运行机制研究与调峰效益分析   总被引:7,自引:2,他引:5  
二氧化碳捕集和封存(carbon capture and storage,CCS)是实现电力低碳化发展的关键技术,具有光明的发展前景。作为未来重要的电源选择,碳捕集电厂的运行性能与调整能力将对电网运行的安全性与高效性产生重大影响。结合碳捕集技术的基本原理,深入研究了碳捕集电厂内部的能量流,量化分析了碳捕集电厂的运行区间,并揭示了碳捕集电厂的调峰性能。在此基础上,提出基于"电力系统调峰成本曲线"的分析方法,以直观、简明的方式实现了电力系统的调峰优化决策;并以具有复杂电源结构的电力系统为例进行调峰效果分析,特别测算了碳捕集电厂对电力系统容纳大规模风电接入的贡献率,评估了碳捕集电厂在提高电网运行安全裕度与降低系统调峰成本上的显著效益。  相似文献   

2.
在低碳及智能电网的背景下,提出了一种考虑碳交易并计及碳捕集电厂和换电站的电力系统优化调度模型。首先定义了电动汽车换电站虚拟电厂,并介绍了其运行特点,其次对不同电源的碳排放特性进行了分析,从总投资成本的折旧费用、燃料成本、运行维护成本及碳交易成本四个方面对电源成本进行了分析和建模。在此基础上,兼顾碳排放量和电源成本,引入功率平衡、机组及碳捕集系统爬坡、碳捕集效率等约束,建立了碳市场环境下计及碳捕集电厂和换电站的电力系统优化调度模型,并采用基于动态交换和密度距离的混合混沌粒子群优化算法对模型进行了求解,算例结果证明了所提模型及算法的有效性和正确性。  相似文献   

3.
碳达峰背景下可再生能源占比增加会降低系统灵活性、提高经济成本,并对电网运行稳定性造成冲击。随着电动汽车规模的扩大,其大规模接入电网时也会因充电不确定性而影响电网的稳定性。V2G(vehicle-to-grid)技术的实施使电动汽车规模化参与调峰辅助服务成为可能,故应将其纳入到未来的电力系统规划中。在考虑大规模电动汽车参与V2G调峰的基础上,重点研究了季节因素对电动汽车参与V2G出力的影响。以系统运行成本最小、电网侧负荷波动最小、用户侧经济收益最大建立了多目标规划模型,来优化电源结构,减少电源侧碳排放,提高系统整体经济效益。以我国河北省区域作为算例,设置不同情景进行研究分析。结果表明,规划期内V2G参与比例为70%时结果最优,电源侧碳排放降低3.45%,风、光消纳量提高10.18%,能够有效推动电源结构转型。  相似文献   

4.
在低碳电力的背景下,电力系统碳责任在各利益主体之间的分摊研究具有重要的理论和现实意义。发电机组和负荷作为电力系统的重要组成部分,两者都应该承担起电力系统节能减排的责任。文中提出将电力系统碳责任在发电侧和负荷侧进行共同分摊,将该问题建模成一个基于合作博弈的成本分摊问题,并采用Aumann-Shapley法进行具体地分摊求解,将双侧碳责任分摊机制与仅在发电侧碳责任分摊和仅在负荷侧碳责任分摊机制进行比较。算例结果显示在双侧碳责任分摊机制中,发电机组和负荷都承担了电力系统节能减排的责任,能激励发电机组和负荷的节能降耗行为,降低系统碳排放。  相似文献   

5.
新型电力系统建设是我国电力行业的重大转型,其需求来源于经济社会发展,其实现依赖于电力系统运行机理的改进。从近10年电力系统的发展历程和阶段性目标分析出发,基于“双碳”目标,对新型电力系统的电源构成、特点及运行模式进行逆向推理和分析,进而分析新运行模式下的部分关键技术需求。指出:为了实现“双碳”目标,电力系统电源构成必须进行巨大调整,特别是在2030年之后;在新型电力系统中,发电侧将以新能源为主体,用户侧将出现大量产销者并呈现大量分布自治的形态,能源互联网将成为新型电力系统的基础支撑,电网调度将主要基于市场化机制实现;新型电力系统的建设在电力电量平衡、系统安全、有源配用电网管控、新能源发电和并网、电力交易和调度等方面迫切需要相关创新技术的支撑。  相似文献   

6.
电力行业对实现碳中和有至关重要的作用,并助力社会实现可持续发展。近年来,借助于现代通信、量测和控制手段,需求侧出现大量可参与系统运行的资源,有利于进一步促进电网碳中和发展。面向碳中和的多元需求侧资源参与系统运行关键技术,旨在分析近年来兴起并快速发展的需求侧资源运行特性和碳排放特性,以碳中和为目标,研究电动汽车、需求侧储能、分布式电源以及柔性可调负荷等与系统交互的市场机制、互动策略和系统优化方法,为现代电力系统的绿色发展提供有效的技术支撑,这是当前学术界和工业界的重点工作领域。  相似文献   

7.
《供用电》2021,(3)
围绕全球能源系统发展的多项分析研究显示,到2050年,电力在全球能源需求总量中的比重将从当前的20%增长到40%。电力行业将对实现碳中和起到至关重要的作用,并助力社会实现可持续发展。近年来,借助于现代通信、量测和控制手段,需求侧出现大量可参与系统运行的资源,有利于进一步促进电网碳中和发展。面向碳中和的多元需求侧资源参与系统运行关键技术,旨在分析近年来新起并快速发展的需求侧资源运行特性和碳排放特性,以碳中和为目标,研究电动汽车、需求侧储能、分布式电源以及柔性可调负荷等与系统交互的市场机制、互动策略和系统优化方法,为现代电力系统的绿色发展提供有效的技术支撑。  相似文献   

8.
应用于电力系统的碳捕集技术及其带来的变革   总被引:7,自引:4,他引:3  
二氧化碳捕集和封存技术是当前最为关键的低碳技术之一,协调了化石燃料利用与碳减排之间的矛盾,从而具有广泛的应用前景。文中全面介绍了当前碳捕集技术在电力系统中的实施情况,描述了碳捕集电厂的发展前景,并结合电厂运行、电网运行、微观个体电厂投资与宏观整体电源规划中的实际需求,阐述了应用于电力系统的碳捕集技术将面临的主要挑战与亟待解决的问题,探讨了碳捕集电厂对于电力系统接纳大规模风电的促进作用,揭示了碳捕集技术的引入对于电力系统所带来的重大变革。  相似文献   

9.
《供用电》2021,38(10)
能源电力行业占据碳排放的比例较大,其中以新能源为主的电源结构调整是重要手段。提出了一种考虑碳约束的区域电源多阶段双层扩展规划方法,该方法适用于多区域电力系统协调可再生能源拓展规划与电网建设的多阶段决策,实现考虑碳约束和可再生能源出力不确定的双层优化。在上层模型中,分别计算每个区域的扩展成本和碳排放量。在下层模型中,将上层得到的总扩展成本和碳排放量作为多区域扩展规划中的约束,对区域发电和跨区输电进行同步扩容。所提双层规划模型可避免某地区在没有补偿的情况下承担额外的扩展成本,并为多区域电力系统扩展中的参与地区提供积极互动。应用算例表明了所提长期规划模型的可行性和有效性。  相似文献   

10.
碳中和目标下水电高占比电网的煤电陆续退役、新能源加速发展,将带来调节能力和安全稳定弱化等诸多问题,电源结构和网架形态的适应能力面临着重大挑战。为应对水电高占比电网在能源转型过程中面临的共性问题与挑战,建立了一种面向碳中和发展目标的水电高占比电网研究框架体系,从电源规划、网架规划、稳定性分析与控制、规划方案评估与运行模拟4个层面对碳中和能源转型过程中需要研究的关键问题进行了分析。在此基础上,以过渡期和形成期两阶段对碳中和目标下水电高占比电网的发展形态进行了阐释。以中国四川电网为例,提出了碳中和目标下四川电网电源结构形态和主网架形态的演化路径,表明了所提研究框架和发展形态的适用性。  相似文献   

11.
在传统的电力系统低碳调度中,将发电厂视为唯一碳排放责任承担者对发电侧极不公平。追踪碳排放的来源,公平地将碳排放分摊到发电侧和用户侧并引导用户环保用电意义重大。针对已有碳流追踪方法因复功率运算导致追踪结果出现负碳排的问题,提出了一种基于碳排放流的碳流追踪方法,在碳流计算的基础上对系统碳流进行直接追踪;基于追踪结果,构建了由发电厂和用户共同承担的碳排放责任分摊模型;进而提出了基于碳流追踪的电力系统源网荷低碳经济调度方法,该方法在一阶段以发电成本和发电侧碳排放成本最小为目标对机组组合进行优化;二阶段以需求响应成本和用户碳排放成本最小化优化负荷分布。算例分析表明:相比于已有追踪方法,所提碳流追踪方法能够避免负碳排的出现;所提低碳经济调度方法可以兼顾系统的经济性和环保性,同时引导用户主动响应并降低系统的碳排放量。  相似文献   

12.
为助力电力系统低碳化改革,电力系统碳计量应在测量发电侧直接碳排放的基础上,将碳排放责任从发电侧扩展至负荷侧和线路侧,得到电力系统全环节碳排放分摊责任。该文提出一种利用节点导纳矩阵运算实现碳流追踪的解析算法。结合潮流与碳流的换算关系,经矩阵运算得到电源、负荷及线路网损三者之间碳排放量分布关系的解析表达式。通过IEEE 30节点系统算例及与其他算法的对比分析,验证碳流追踪模型的正确性。此外,比较发电侧、负荷侧及线路侧计量方式下的节点和线路碳排放量,以及引入可再生能源及碳捕集与封存技术后系统全环节碳排放量的分布变化,并针对影响碳减排比例的因素展开分析,为后续碳排放责任分摊及系统低碳改造提供数据支持。  相似文献   

13.
电力在我国能源消费与碳排放中占据重要地位。电力系统低碳转型,构建以新能源为主体的新型电力系统将对我国碳达峰、碳中和战略目标的实现起到关键作用。该文首先分析了从“电视角”到“碳视角”下电力学科研究体系的转变趋势,并对当前“碳视角”下的电力系统研究概况进行了综述。基于“碳视角”下的电力系统研究路径,从电力系统全环节碳排放计量和“战略-技术-市场”协同低碳化解决方案2个方面,分析了电力低碳转型过程中的关键科学问题。在此基础上,从碳计量与碳追踪、碳规划与碳轨迹、碳减排与碳优化、碳市场与碳交易4个方面提出了新型电力系统“碳视角”的研究框架,并对关键研究内容进行了分析和阐述。  相似文献   

14.
2020年9月,中国提出将努力争取2060年前实现碳中和。大力发展风电、光伏高比例并网的新能源电力系统,是实现碳中和目标的重要途径。由于新能源发电具有波动性和随机性,因此需要提升系统灵活性以保障高比例新能源电力系统的安全、可靠和经济运行。以实现2060年碳中和目标为边界,采用内嵌全年8 760 h全景时序生产模拟的电力规划模型与方法,考虑各类灵活性资源约束,从不同时间和空间尺度统筹优化新能源电源、储能及电网互联容量,为实现碳中和目标提供可行方案。在此基础上,开展系统弃电率、新能源电源装机、储能配置及电网互联容量灵敏度分析,进一步论证模型方法的有效性,并量化分析高比例新能源电力系统源-网-储协同规划的效益。  相似文献   

15.
为实现碳达峰碳中和目标,我国能源生产和消费需要加快转型,电力系统作为未来的能源枢纽,将起到关键作用。该文对我国电力系统"十三五"发展现状进行总结,分析"四个革命、一个合作"及新发展理念等指导思想下未来以新能源为主体的新型电力系统在满足电力供应、保障安全稳定、提高效率效益、优化网架结构等方面发展的重点,归纳了未来电力系统清洁、安全、灵活、高效的4个内涵特征,从电力需求增长、电源结构调整、电网格局优化、新技术应用等方面对"十四五"电力系统发展进行研判,提出基于碳达峰碳中和目标的能源电力发展计算模型,对中长期能源电力演化路径进行展望。  相似文献   

16.
《供用电》2021,38(9)
在提出实现"双碳"目标的背景之下,需求侧资源的重要性在各个行业得到了充分的认识,尤其是将需求侧灵活性资源参与到电力系统运行中。需求侧资源的开发,不仅有利于国内电力市场的发展和完善,而且大力推进需求侧能源清洁低碳发展能够在碳达峰、碳中和中发挥巨大作用。为此,从碳中和对需求侧资源互动的影响分析以及碳中和下的需求响应互动支撑技术2个方面进行了综述,分析了碳中和对开展需求响应的影响,为有效提高需求侧资源响应电网调度的灵活性与快速性提供了解决思路。  相似文献   

17.
构建以新能源为主体的新型配电网是实现碳达峰、碳中和目标的关键途径。随着能源结构和系统形态的改变,配电网碳排放特性也发生显著变化,准确评估低碳性对新型配电网的规划和运行都具有重要意义。揭示了新型配电网低碳性内涵,全面总结了适用于新型配电网低碳性评估理论体系。首先,从电源侧、电网侧、负荷侧、储能侧4个方面对新型配电网的内涵进行了分析;其次,梳理了描述配电网低碳性的低碳指标体系,并对综合评估方法、碳排放分析法和仿真模拟法3种低碳性评估方法进行研究综述;最后,从源、网、荷、储4个方面归纳总结了新型配电网减碳措施的关键技术,以期为后续新型电力系统建设、运行等提供借鉴。  相似文献   

18.
赵腾  邬炜  高艺 《电网技术》2022,(12):4895-4905
全球许多国家已发布碳中和目标,电力系统碳中和日益受到各方重视,而电力-燃气系统碳循环是实现电力系统碳中和的一种重要途径。该文在提出可再生能源驱动的电力-燃气系统碳循环与能量循环运行体系基础上,建立了电力-燃气能量/物质耦合模型,提出了考虑电力系统碳中和约束与碳循环约束的优化模型,并以西班牙电力-燃气系统为例进行分析。研究发现,碳循环比例变化将对电力系统灵活性需求、建设与运行成本、二氧化碳存储与封存需求等产生较大影响。结果表明,推动实现电力-燃气系统碳循环与能量循环,需要加强电力系统灵活性研究和建设,并重视相关能量转换与碳处理技术的经济性提升。  相似文献   

19.
电力行业是中国煤炭消耗和碳排放最大的单一行业。实时、准确、全面的计量电力碳排放是挖掘电力碳减排潜力、引导电力用户互动减碳的基础与前提,也是支撑碳市场的数据基础。为此,以联合国气候变化公约提出的“可测量、可报告、可核实”的“三可”原则为基本设计理念,基于电力系统碳排放流分析理论,提出了电力系统全环节碳计量方法,实现电力系统源、网、荷三侧电碳信息的“分钟级”实时碳计量和“用户级”精细碳计量。在此基础上,设计了电力系统全环节碳计量系统,介绍了电力碳表系统的基本概念和实现形式。基于中国江苏常州市的实际系统运行数据和负荷数据开展了仿真验证,仿真结果验证了所提方法的有效性。最后,对电力能源系统碳计量领域需要进一步研究的关键问题进行了展望。  相似文献   

20.
传统的碳排放计算模型,发电侧承担着主要的责任.但是在碳排放流的理论中,认为电网侧和用户侧才是碳排放的主要来源,需要承担主要责任.因此,有必要利用碳排放流分析方法将发电侧的碳足迹转移到电网侧和用户侧,从而制定出更有效的节能减排策略,减少二氧化碳的排放.因此,为了实现电力系统的低碳、节能和经济运行,本文把碳-能复合流放进了...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号