首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.  相似文献   

2.
The research on a novel miniaturized loop heat pipe (LHP) consisted of an evaporator, a condenser, vapor and liquid lines is presented in this paper. In the LHP, the evaporator was separated into two parts of boiling and suction chambers by a vapor separator, which drove vapor to one-way flow to vapor line. Moreover, the bottom of evaporator was connected as the cycle channel of refrigerant. Thin copper plates with micro-fins as enhanced structures fabricated by the ploughing–extrusion (P–E) method were embedded in the boiling chamber. Accordingly, the copper fiber sintered felt fabricated by the solid-phase sintering of copper fibers with rough surface, was filled in the suction chamber of evaporator as the wick to provide the capillary force. In addition, the integral rhombic-shaped pillars fabricated by the milling, behaved as intensified condensation structures in the condenser. The startup and operation characteristics of LHP were tested under different heat loads and refrigerants. The experimental results showed that the highest temperature of evaporator reached 93.2 °C under the maximum heat load of 150 W.  相似文献   

3.
Loop heat pipe for cooling of high-power electronic components   总被引:1,自引:0,他引:1  
In this paper, we present a new development of loop heat pipe (LHP) technology in its applications to cooling systems for high-power IGBT elements. An advanced method of LHP evaporator wick manufacturing has been proposed. Following this approach, a 16 mm outer diameter and 280 mm-length LHP evaporator was designed and manufactured. Nickel and titanium particles were used as raw material in LHP evaporator wick fabrication. LHP with a nominal capacity as high as 900 W for steady-state condition and more than 900 W for a periodic mode of operation at a temperature level below 100 °C and a heat transfer distance of 1.5 m was designed through the cooling of a high-power electronic module. An experimental program was developed to execute LHP performance tests and monitor its operability over a span of time. An investigation of the effects of LHP performance of parameters such as evaporator and condenser temperatures and LHP orientation in a gravity field was brought about. As regards the results of this initial series of tests, it was found that LHP spatial orientation within the nominal range of heat loads has no drastic effect on overall LHP functioning, whereas condenser temperature does play an important role, especially in the range of heat load close to critical. A 2D nodal model of the evaporator was developed and provides us with confirmation of the suggestion that when high-power dissipation levels are available, low wick conductivity is well adapted for LHP applications.  相似文献   

4.
A practical quasi three-dimensional numerical model is developed to investigate the heat and mass transfer in a square flat evaporator of a loop heat pipe with a fully saturated wicking structure. The conjugate heat transfer problem is coupled with a detailed mass transfer in the wick structure, and incorporated with the phase change occurring at the liquid–vapor interface. The three-dimensional governing equations for the heat and mass transfer (continuity, Darcy and energy) are developed, with specific attention given to the wick region. By comparing the results of the numerical simulations and the experimental tests, the local heat transfer mechanisms are revealed, through the obtained temperature distribution and the further derived evaporation rates along the liquid–vapor interface. The results indicate that the model developed herein can provide an insight in understanding the thermal characteristics of loop heat pipes during steady-state operation, especially at low heat loads.  相似文献   

5.
A mathematical model of evaporative heat transfer in a loop heat pipe was developed and compared with experiments. The steady-state thermal performance was predicted for different sintered nickel wicks, including monoporous and bidisperse structures. The effect of wick pore size distribution on heat transfer was taken into consideration. The wick in the evaporator was assumed to possess three regions during vaporization from an applied heat load: a vapor blanket, a two-phase region, and a saturated liquid region. The evaporator wall temperature and the total thermal resistance at different heat loads were predicted using ammonia as the working fluid. The predictions showed distinct heat transfer characteristics and higher performance for the bidisperse wick in contrast with monoporous wick. A bidisperse wick was able to decrease the thickness of the vapor blanket region, which presents a thermal resistance and causes lower heat transfer capacity of the evaporator. Additionally, a validation test presented good agreement with the experiments.  相似文献   

6.
Startup of a horizontal lithium-molybdenum heat pipe from a frozen state   总被引:1,自引:0,他引:1  
Results of the simulation of the startup from a frozen state of a molybdenum heat pipe with lithium working fluid are presented and discussed. The 1.8-m-long heat pipe was tested in the horizontal position and had a liquid annular space between the porous wick and the wall. The 30-cm-long evaporator section was inductively heated and the 147-cm-long condenser was cooled by thermal radiation to the quartz tube enclosing the heat pipe and to the ambient. The space between the quartz tube and the heat pipe was evacuated in order to minimize heat losses by convection and conduction. Model results on the progression of the thaw front, liquid pooling at the end of the condenser, and the wall temperature along the heat pipe were found to be in good agreement with experimental measurements. Results showed that, as the heat pipe reached quasi-steady state operation at an evaporator wall temperature of 1550 K, the wall temperature near the end of the condenser dropped precipitously by 450 K, because of the formation of a 8.3-cm-long liquid plug and the end heat losses in the condenser.  相似文献   

7.
A free-molecular, transition and continuum vapor flow model, based on the dusty gas model, is developed and incorporated in HPTAM, a two-dimensional heat pipe transient analysis model, to analyze the startup of a radiatively-cooled sodium heat pipe from a frozen state. The calculated wall temperatures at different times during the startup transient are in good agreement with measurements. Results showed that minimal sublimation and resolidification of sodium occurred in the early time of the transient, during which the vapor flow is free molecular. The melting of sodium in the wick occurred initially in the radial direction, then axially after the complete thaw of the evaporator section. Subsequent evaporation of liquid sodium caused the vapor flow in the evaporator to transition to the continuum regime. A continuum vapor flow front propagated axially toward the condenser, following the melt front in the wick region. The heat rejection capability of the heat pipe increased gradually as the continuum vapor flow front traveled along the condenser.  相似文献   

8.
An overall two-dimensional numerical model of the miniature flat plate capillary pumped loop (CPL) evaporator is developed to describe the liquid and vapor flow, heat transfer and phase change in the porous wick structure, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The entire evaporator is solved with SIMPLE algorithm as a conjugate problem. The effect of heat conduction of metallic side wall on the performance of miniature flat plate CPL evaporator is analyzed, and side wall effect heat transfer limit is introduced to estimate the performance of evaporator. The shape and location of vapor-liquid interface inside the wick are calculated and the influences of applied heat flux, liquid subcooling, wick material and metallic wall material on the evaporator performance are investigated in detail. The numerical results obtained are useful for the miniature flat plate evaporator performance optimization and design of CPL.  相似文献   

9.
The present paper experimentally investigates the effect of non-condensable gases (NCGs) on the thermal performance of the miniature loop heat pipe (mLHP). Copper mLHP with the flat disk shaped evaporator, 30 mm diameter and 10 mm thick, and fin-and-tube type condenser, 50 mm length and 10 mm height, located at a distance of 150 mm was used in the study. The device which was designed for the thermal control of computer microprocessor was capable of transferring maximum heat load of 70 W while maintaining evaporator temperature below 100 °C limit for electronic equipments. Water was used as the heat transfer fluid inside the mLHP. All the tests were conducted with the evaporator and condenser at the same horizontal level. Simple methods were devised to detect and purge the generated NCG out of the loop heat pipe without disassembling the system. Experiments conducted to classify the trends in the NCG production and storage revealed that majority of the gas is generated in the first few thermal runs and is accumulated in the compensation chamber. Sensitivity tests show that overall effect of the NCG is to elevate the steady-state operating temperature of the loop and increase the start-up time required by the evaporator to achieve stable conditions for the given heat load. As an outcomes of the research work, it can be concluded that mLHPs are more tolerable to the NCGs than conventional heat pipes due to the presence of compensation chamber that can accumulate most of the released gas without major performance degradation.  相似文献   

10.
Two-dimensional numerical model for the global evaporator of miniature flat plate capillary pumped loop (CPL) is developed to describe heat and mass transfer with phase change in the porous wick, liquid flow and heat transfer in the compensation cavity and heat transfer in the vapor grooves and metallic wall. The governing equations for different zones are solved as a conjugate problem. The side wall effect heat transfer limit is introduced to estimate the heat transport capability of evaporator. The influences of liquid subcooling, wick material, metallic wall material and non-uniform heat flux on the evaporator performance are discussed in detail.  相似文献   

11.
A 3D model has been developed for investigating heat and mass transfer in a flat evaporator of a copper–water loop heat pipe. It takes into account heat-transfer processes in the active zone, the barrier layer of the wick, the wall and the compensation chamber. The problem was solved by the finite difference method with the use of a nonuniform grid adapted to the configuration of the flat evaporator and its geometric peculiarities. Investigations have been carried out for understanding the effect of the heating zone size on heat distribution in the evaporator. The heating area was 9 cm2 with a uniform heat supply and 1 cm2 with a concentrated one. Numerical simulation has been performed for a heat load range from 20 to 1100 W. Data have shown that a decrease in the heating area at a fixed heat load results in both increasing temperature on the evaporator wall under the heater and local wick draining in the active zone. The results of the model have been verified using results of experimental tests.  相似文献   

12.
The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium.  相似文献   

13.
The present investigation reports a theoretical and experimental study of a wire screen heat pipe, the evaporator section of which is subjected to forced convective heating and the condenser section to natural convective cooling in air. The theoretical study deals with the development of an analytical model based on thermal resistance network approach. The model computes thermal resistances at the external surface of the evaporator and condenser as well as inside the heat pipe. A test rig has been developed to evaluate the thermal performance of the heat pipe. The effects of operating parameters (i.e., tilt angle of the heat pipe and heating fluid inlet temperature at the evaporator) have been experimentally studied. Experimental results have been used to compare the analytical model. The heat transfer coefficients predicted by the model at the external surface of the evaporator and condenser are reasonably in agreement with experimental results.  相似文献   

14.
Cryogenic loop heat pipes (CLHPs) possess high pumping capability and good heat transfer performance that are important for effective and efficient cryogenic heat transport with considerable applications in space and terrestrial surroundings. Built on a previous model developed for a conventional loop heat pipe (Bai et al. [21]), this paper establishes a steady-state mathematical model for a cryogenic loop heat pipe using nitrogen as the working fluid. The modeling results are benchmarked with an experimental study and good agreement is achieved. A parametric study of the effect of heat sink temperature, parasitic heat loss, adverse elevation and heat loads applied to the secondary evaporator on the performance of the CLHP is conducted. A number of interesting phenomena are revealed through the analysis such as CLHP working in the variable conductance zone and enhanced performance of the CLHP by switching on the secondary evaporator. The detailed temperature and pressure characteristics of the CLHP are also captured that provide guidance for the system design and optimization.  相似文献   

15.
The existing work deals with the evaluation of compact loop heat pipe by means of a low thermal conductivity sintered chrysotile wick to avoid large heat leaks as of the evaporator to the compensation chamber. Accordingly, a wick with low thermal conductivity (0.068–0.098 W/mK) chrysotile powder of a mean particle diameter of 3.4 μm is fabricated through sintering. Nine chrysotile wicks are sintered with different compositions of binders (bentonite and dextrin) and pore-forming agent NaCl at sintering temperatures of 500°C, 600°C, and 700°C with a sintering time of 30 min. The wick properties, for instance, porosity, permeability, wettability, and capillary rise are studied owing to sintering temperature. Consequently, it is observed that a pure chrysotile powdered wick at a sintering temperature of 600°C exhibits a high porosity of 61.8% with permeability 1.04 × 10−13 m2 and a capillary rise of 4.5 cm in 30 s and is considered optimal. This optimal wick is used for performance evaluation in compact loop heat pipe and a decrease of 36.1% in thermal resistance is found when compared with copper mesh wick in a loop heat pipe. The lowermost thermal resistance originates to be 0.147 K/W at 120 W with wall temperature 57.7°C. This indicates that loop heat pipe with sintered chrysotile wick can operate at lower heat loads efficiently when compared with copper mesh wick and as heat load increases a chance of dry out condition occurs. The highest evaporative heat transfer coefficient obtained is 65.7 kW/m2 K at a minimum heat load.  相似文献   

16.
Peng Cheng  Hongbin Ma 《传热工程》2013,34(11-12):1037-1046
A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the system multidegree oscillation of vapor bubbles and liquid plugs, including the effects of filling ratio, operating temperature, gravitational force, and temperature difference between the evaporator and condenser. The model shows that the average velocity of liquid slugs is determined by the temperature difference between the evaporator and condenser. As the turn number increases, the temperature difference for the system to start the oscillating motion decreases. Increasing the bubble number will make the system more unstable and the system can be easily started up. The existence of gravity at the bottom heating mode will make the system easily produce the oscillating motion and decrease the temperature difference as well. Results presented here will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.  相似文献   

17.
A mathematical model of evaporation and condensation heat transfer in a copper-water wicked heat pipe with a sintered-grooved composite wick is developed and compared with experiments. The wall temperatures are measured under different input power levels and working temperature conditions. The results show that the heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The experimental data for the boiling heat transfer are well correlated by the theory of Stralen and Cole. Higher heat load drives the heat pipe to spend more time achieving the equilibrium state during the transient start-up process. The response curves of the evaporator thermal resistance are overlapped, and the condenser thermal resistance increases more sharply at the beginning. The total thermal resistance of the heat pipe ranges from 0.02 to 0.56 K/W.  相似文献   

18.
《传热工程》2012,33(9):765-774
Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth–wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.  相似文献   

19.
The performance degradation of flattened heat pipes is studied experimentally under a horizontal orientation. The original cylindrical copper/water heat pipes are ?6 mm and 30 cm in length. Tested are the sintered-powder wick and the groove wick. The maximum heat load (Qmax), the evaporator resistance (Re), the condenser resistance, the overall thermal resistance, and the longitudinal temperature distributions are measured under incremented heat loads. After flattening, Re is slightly reduced. Qmax is hardly affected when only the evaporator is flattened; but it is greatly reduced for fully flattened heat pipes. Different mechanisms of performance degradation are observed for flattened powdered and grooved heat pipes. With a thicker wick and larger saturate charge, the main degradation mechanism of flattened powdered heat pipes is liquid clogging at the condenser end. This causes malfunction of a powdered heat pipe flattened to 2.5 mm. When flattened to 3 mm, the powdered heat pipe exhibits milder Qmax degradation than a grooved heat pipe because the liquid flow is better protected against the vapor–liquid interfacial shear. In contrast, the serious Qmax degradation of a flattened grooved heat pipe is mainly caused by the interfacial shear which leads to greatly prompted dryout at the evaporator.  相似文献   

20.
A novel vapor chamber was fabricated to assess the feasibility of combining hydrophobic and hydrophilic wettabilities in the evaporator to optimize thermal performance. The proposed vapor chamber included a separate layer of hydrophilic sintered copper powder wick that was pressed in intimate contact with a hydrophobic evaporator substrate with a water contact angle around 140°. The contact between the wick layer and the evaporator was provided by sixteen posts implemented on the condenser, which pushed the wick layer toward the evaporator. The thermal performance was evaluated based on the thermal resistance, source temperature, and temperature uniformity across the condenser. Results were compared with those of a baseline vapor chamber that was fabricated by sintering hydrophilic copper particles on a hydrophilic copper evaporator substrate. The wick size and the copper powders used to fabricate the wick structure were the same in both vapor chambers. Overall, the performance of the proposed vapor chamber was lower than that of the baseline vapor chamber, possibly due to microscale gaps between the wick layer and the evaporator substrate. However, the concept of using a hydrophilic wick to force liquid in contact with a hydrophobic evaporating surface could enable a new family of vapor chambers with low thermal resistance, if more efficient techniques for improving the mechanical contact between the wick layer and the evaporator are introduced through further detailed research. If successful, the fabrication cost of vapor chambers would be reduced as well, by using prepared wick structures, which do not require high-temperature sintering processes on evaporators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号