首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
A mathematical model of evaporation and condensation heat transfer in a copper-water wicked heat pipe with a sintered-grooved composite wick is developed and compared with experiments. The wall temperatures are measured under different input power levels and working temperature conditions. The results show that the heat transfer in the condenser section was found to be only by conduction. In the evaporator, however, either conduction or boiling heat transfer can occur. The experimental data for the boiling heat transfer are well correlated by the theory of Stralen and Cole. Higher heat load drives the heat pipe to spend more time achieving the equilibrium state during the transient start-up process. The response curves of the evaporator thermal resistance are overlapped, and the condenser thermal resistance increases more sharply at the beginning. The total thermal resistance of the heat pipe ranges from 0.02 to 0.56 K/W.  相似文献   

2.
A study on the new separate heat pipe refrigerator and heat pump   总被引:2,自引:0,他引:2  
Z. Ling   《Applied Thermal Engineering》2004,24(17-18):2737-2745
A new separate heat pipe refrigerator and heat pump is suggested based on the general three temperature thermal jet refrigerator and heat pump cycle. Sub-cooled hot water or other appropriate liquid heated by low grade heat sources forms the hot end and another heat pipe containing evaporator and condenser ends, adiabatic section of two-phase ejector and throttling tube is as the cold end of the separate heat pipe system. Performance relations for the thermal jet refrigerator and heat pump of such system is analyzed and a method of thermodynamic performance analysis is recommended. Primary prediction shows the feasibility of such heat pipe system for cold and warm water supply.  相似文献   

3.
A free-molecular, transition and continuum vapor flow model, based on the dusty gas model, is developed and incorporated in HPTAM, a two-dimensional heat pipe transient analysis model, to analyze the startup of a radiatively-cooled sodium heat pipe from a frozen state. The calculated wall temperatures at different times during the startup transient are in good agreement with measurements. Results showed that minimal sublimation and resolidification of sodium occurred in the early time of the transient, during which the vapor flow is free molecular. The melting of sodium in the wick occurred initially in the radial direction, then axially after the complete thaw of the evaporator section. Subsequent evaporation of liquid sodium caused the vapor flow in the evaporator to transition to the continuum regime. A continuum vapor flow front propagated axially toward the condenser, following the melt front in the wick region. The heat rejection capability of the heat pipe increased gradually as the continuum vapor flow front traveled along the condenser.  相似文献   

4.
In order to observe startup characteristics, a vertically installed high‐temperature heat pipe fin was tested. The temperature curves during the startup process are given. It was found that the evaporator bottom temperature in the high‐temperature heat pipe fin with a constant heat input increased very quickly over time. The temperature at the evaporator top and the condenser temperature lagged behind the temperature of the evaporator bottom. The evaporator outlet temperature coincided with the condenser middle temperature. The temperature at the end of the condenser exhibited a phenomenon of temperature pulsation. If the high‐temperature heat pipe fin was placed horizontally for a certain period of time and then tested in its vertical position, the temperature pulsation phenomenon at the condenser disappeared and a good isothermal condition emerged. Further analysis showed that larger heat inputs yielded faster startups and weaker pulsation during the startup period. © 2004 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(6): 411–416, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20022  相似文献   

5.
A novel cryogenic heat pipe, oscillating heat pipe (OHP), which consists of an 4 × 18.5 cm evaporator, a 6 × 18.5 cm condenser, and 10 cm length of adiabatic section, has been developed and experimental characterization conducted. Experimental results show that the maximum heat transport capability of the OHP reached 380 W with average temperature difference of 49 °C between the evaporator and condenser when the cryogenic OHP was charged with liquid nitrogen at 48% (v/v) and operated in a horizontal direction. The thermal resistance decreased from 0.256 to 0.112 while the heat load increased from 22.5 to 321.8 W. When the OHP was operated at a steady state and an incremental heat load was added to it, the OHP operation changed from a steady state to an unsteady state until a new steady state was reached. This process can be divided into three regions: (I) unsteady state; (II) transient state; and (III) new steady state. In the steady state, the amplitude of temperature change in the evaporator is smaller than that of the condenser while the temperature response keeps the same frequency both in the evaporator and the condenser. The experimental results also showed that the amplitude of temperature difference between the evaporator and the condenser decreased when the heat load increased.  相似文献   

6.
Peng Cheng  Hongbin Ma 《传热工程》2013,34(11-12):1037-1046
A mathematical model predicting the oscillating motion in an oscillating heat pipe is developed. The model considers the system multidegree oscillation of vapor bubbles and liquid plugs, including the effects of filling ratio, operating temperature, gravitational force, and temperature difference between the evaporator and condenser. The model shows that the average velocity of liquid slugs is determined by the temperature difference between the evaporator and condenser. As the turn number increases, the temperature difference for the system to start the oscillating motion decreases. Increasing the bubble number will make the system more unstable and the system can be easily started up. The existence of gravity at the bottom heating mode will make the system easily produce the oscillating motion and decrease the temperature difference as well. Results presented here will assist in optimizing the heat transfer performance and provide a better understanding of heat transfer mechanisms occurring in the oscillating heat pipe.  相似文献   

7.
Heat transfer in the evaporator and condenser sections of a pulsating heat pipe (PHP) with open end is modeled by analyzing thin film evaporation and condensation. The heat transfer solutions are applied to the thermal model of the pulsating heat pipe and a parametric study was performed. The results show that the heat transfer in a PHP is mainly due to the exchange of sensible heat. The frequency and amplitude of the oscillation is almost unaffected by surface tension after steady oscillation has been established. The amplitude of oscillation decreases with decreasing diameter. The amplitude of oscillation also decreases when the wall temperature of the heating section is decreased, but the frequency of oscillation is almost unchanged.  相似文献   

8.
As heat generation in satellites increases, securing sufficient radiator panel area is an important problem. Deployable radiators, whose radiator panels are deployed post‐launch in space to increase the effective radiator panel area of the satellite, is becoming an important thermal control technology. A reservoir embedded loop heat pipe (RELHP) is applied to the deployable radiator for a thermal transport device. This paper presents the heat transport dynamic characteristics of a RELHP using a radiant cooling condenser and liquid forced convection cooling condenser by an experimental study. It was found that heat leak into the liquid line, flexible line, and reservoir increases the length of the sub‐cooling region in the condenser. In the case of the radiant cooling condenser, the sub‐cooling region length is shorter than that of a liquid forced convection cooling condenser. Furthermore, vapor temperature is mainly decided by the radiation capacity of the radiator panel, because liquid temperature returned into the evaporator rises with an increase in radiator panel temperature. In addition, time length from start‐up until steady state is greater than the liquid forced convection cooling condenser case, because the radiator panel has a large heat capacity. © 2008 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20229  相似文献   

9.
Experiments were performed to investigate the heat transfer mechanism in the evaporator section of non-stepped rotating heat pipes at moderate rotational speeds of 2000–4000 rpm or accelerations of 40g–180g, and evaporator heat fluxes up to 100 kW/m2. The thermal resistance of the evaporator section as well as that of the condenser section was examined by measuring the axial temperature distributions of the flow in the core region of the heat pipe and along the wall of the heat pipe. The experimental results indicated that natural convection heat transfer occurred in the liquid layer of the evaporator section under these conditions. The heat transfer measurements were in reasonable agreement with the predictions from an existing rotating heat pipe model that took into account the effect of natural convection in the evaporator section.  相似文献   

10.
The present investigation reports a theoretical and experimental study of a wire screen heat pipe, the evaporator section of which is subjected to forced convective heating and the condenser section to natural convective cooling in air. The theoretical study deals with the development of an analytical model based on thermal resistance network approach. The model computes thermal resistances at the external surface of the evaporator and condenser as well as inside the heat pipe. A test rig has been developed to evaluate the thermal performance of the heat pipe. The effects of operating parameters (i.e., tilt angle of the heat pipe and heating fluid inlet temperature at the evaporator) have been experimentally studied. Experimental results have been used to compare the analytical model. The heat transfer coefficients predicted by the model at the external surface of the evaporator and condenser are reasonably in agreement with experimental results.  相似文献   

11.
The thermal performance of a flat heat pipe thermal spreader has been described by a quasi-3D mathematical model and numerically modeled. An explicit finite volume method with under-relaxation was used for computations in the vapor phase. This was combined with a relatively small time step for the analysis. The physical problem consisted of an evaporator surface that was transiently heated non-uniformly for a short period of time and the heat source then removed. Then the system was cooled by natural convection and radiative heat transfer at the condenser region. The transient temperature distributions at the front and back of the heat spreader were obtained for different times during the transient period. The velocity distribution in the vapor core was also obtained. Due to the effect of phase change at the evaporator and condenser sides, a significant amount of energy is found to be absorbed and partially released during the transient heating and cooling processes. The numerical results indicate that advection and the high thermal diffusivity of the vapor phase accelerate the propagation of the temperature distribution in the vapor core, making it uniform during this process. The condenser temperature distribution was almost uniform at the end of the transient heating process. The transient temperature distribution on a solid aluminum plate was compared with the flat heat pipe results and indicated that the flat heat pipe successfully spread the heat uniformly at the condenser side of the structure.  相似文献   

12.
Fairly stable surfactant free copper–distilled water nanofluids are prepared using prolonged sonication and homogenization. Thermal conductivity of the prepared nanofluid displays a maximum enhancement of ~15% for 0.5 wt% of Cu loading in distilled water at 30 °C. The wall temperature distributions and the thermal resistances between the evaporator and the condenser sections of a commercial screen mesh wick heat pipe containing nanofluids are investigated for three different angular position of the heat pipe. The results are compared with those for the same heat pipe with water as the working fluid. The wall temperatures of the heat pipes decrease along the test section from the evaporator section to the condenser section and increase with input power. The average evaporator wall temperatures of the heat pipe with nanofluids are much lower than those of the heat pipe with distilled water. The thermal resistance of the heat pipe using both distilled water and nanofluids is high at low heat loads and reduces rapidly to a minimum value as the applied heat load is increased. The thermal resistance of the vertically mounted heat pipe with 0.5 wt% of Cu–distilled water nanofluid is reduced by ~27%. The observed enhanced thermal performance is explained in light of the deposited Cu layer on the screen mesh wick in the evaporator section of the heat pipe.  相似文献   

13.
In this research the performance of a U-shaped pulsating heat pipe (PHP) was investigated using numerical methods. This heat pipe consists of two sections: The evaporator is set at the two ends of the pipe, and the middle part of the pipe comprises the condenser section. This heat pipe is a type of open looped pulsating heat pipe. The governing equations are derived analytically from the continuity, momentum, and energy equations and are solved implicitly. In this model, considering the liquid mesh, the rate of convection and boiling heat transfer in the U-shaped PHP, which has not been investigated as of yet, are examined. The effect of the evaporator temperature on the pulse amplitude and frequency, rate of convection, and boiling heat transfer is also investigated. The results show that by increasing the evaporator temperature, due to the increase in pulse amplitude and frequency, the rate of heat transfer due to convection and boiling in the pipe will increase too. Furthermore, it is derived that by increasing the evaporator temperature, the share of boiling heat transfer will increase. In order to validate the results, the calculated heat transfer is compared to experimental and analytical results, and it is seen that the suggested model correctly predicts the rate of heat transfer within a precise range.  相似文献   

14.
Mathematical modeling of steady-state operation of a loop heat pipe   总被引:1,自引:0,他引:1  
A steady-state mathematical model of a loop heat pipe is established and compared with experimental results in this work. The modeling of the evaporator wick includes not only the single-layer wick, but also the two-layer compound wick. The annular flow model is adopted in the modeling of the condenser, in which the effect of surface tension of liquid and the interaction between the liquid and vapor phases including both frictional and momentum-transfer shear stresses are considered. The model can predict the decreasing length of the condenser two-phase zone under the constant conductance mode caused by the volume expansion of the liquid in the compensation chamber, and is in good agreement with the experimental data. It also shows that the application of the two-layer compound wick can improve the performance of the loop heat pipe operating under the variable conductance mode, due to the reduction of heat leak from the evaporator to the compensation chamber. A parametric study of the effect of heat sink temperature, ambient temperature, adverse elevation, and working fluid inventory on the operating temperatures of the loop heat pipe is also conducted, which further contributes to the understanding of the steady-state operating characteristics of loop heat pipes.  相似文献   

15.
To regulate temperature in passive solar houses and green houses, the authors have developed a heat exchanger capable of controlling the heat flow. It has a thermal switch mechanism without mechanically moving parts. It consists of an evaporator, a condenser, a vapor passage pipe, a liquid return pipe having an inverted-U-pipe, and a heater mounted on the inverted-U-pipe. The heat exchanger can transfer, or reduce to zero, heat from the evaporator to the condenser by regulating a slight heater input. The authors have fabricated a model of the heat-flow controllable heat exchanger to examine its thermal switching and heat exchange characteristics, and then compared the obtained results with calculation results. It was clarified that the experimental results agree with the calculation results.  相似文献   

16.
The temperature distribution across a flat heat pipe sandwich structure, subjected to an intense localized thermal flux has been investigated both experimentally and computationally. The aluminum sandwich structure consisted of a pair of aluminum alloy face sheets, a truncated square honeycomb (cruciform) core, a nickel metal foam wick and distilled water as the working fluid. Heat was applied via a propane torch to the evaporator side of the flat heat pipe, while the condenser side was cooled via natural convective and radiative heat transfer. A novel method was developed to estimate experimentally, the heat flux distribution of the torch on the evaporator side. This heat flux distribution was modeled using a probability function and validated against the experimental data. Applying the estimated heat flux distribution as the surface boundary condition, a finite volume analysis was performed for the wall, wick and vapor core regions of the flat heat pipe to obtain the field variables in these domains. The results were found to agree well with the experimental data indicating the thermal spreading effect of the flat heat pipe.  相似文献   

17.
The heat pipe cooling system in this study consists of a flat evaporator, a condenser, and rising and falling tubes with water as working fluid. The working fluid has different water levels inside the two components. This is due to the vapor pressure deficits of the evaporation section and condenser section. This paper utilizes condensing and boiling pressure-difference theory and measures the temperature of the condenser wall to develop a theoretic model for the water level deficit inside the thermal module. Results indicate that the working fluid infiltrates the condenser and indirectly verifies the phenomenon leading to the different water levels inside the cooling system. Moreover, the water level height difference theory presented in this study may reduce the length of the condenser by 3.14 cm.  相似文献   

18.
The performance degradation of flattened heat pipes is studied experimentally under a horizontal orientation. The original cylindrical copper/water heat pipes are ?6 mm and 30 cm in length. Tested are the sintered-powder wick and the groove wick. The maximum heat load (Qmax), the evaporator resistance (Re), the condenser resistance, the overall thermal resistance, and the longitudinal temperature distributions are measured under incremented heat loads. After flattening, Re is slightly reduced. Qmax is hardly affected when only the evaporator is flattened; but it is greatly reduced for fully flattened heat pipes. Different mechanisms of performance degradation are observed for flattened powdered and grooved heat pipes. With a thicker wick and larger saturate charge, the main degradation mechanism of flattened powdered heat pipes is liquid clogging at the condenser end. This causes malfunction of a powdered heat pipe flattened to 2.5 mm. When flattened to 3 mm, the powdered heat pipe exhibits milder Qmax degradation than a grooved heat pipe because the liquid flow is better protected against the vapor–liquid interfacial shear. In contrast, the serious Qmax degradation of a flattened grooved heat pipe is mainly caused by the interfacial shear which leads to greatly prompted dryout at the evaporator.  相似文献   

19.
M. Fatouh  E. Elgendy   《Energy》2011,36(5):2788-2795
The present work aims at evaluating the performance characteristics of a vapor compression heat pump (VCHP) for simultaneous space cooling (summer air conditioning) and hot water supply. In order to achieve this objective, a test facility was developed and experiments were performed over a wide range of evaporator water inlet temperature (14:26 °C) and condenser water inlet temperature (22:34 °C). R134a was used as a primary working fluid whereas water was adopted as a secondary heat transfer fluid at both heat source (evaporator) and heat sink (condenser) of the heat pump. Performance characteristics of the considered heat pump were characterized by outlet water temperatures, water side capacities and coefficient of performance (COP) for various operating modes namely: cooling, heating and simultaneous cooling and heating. Results showed that COP increases with the evaporator water inlet temperature while decreases as the condenser water inlet temperature increases. However, the evaporator water inlet temperature has more effect on the performance characteristics of the heat pump than that of condenser water inlet temperature. Actual COP of cooling mode between 1.9 to 3.1 and that of heating mode from 2.9 to 3.3 were obtained. Actual simultaneous COP between 3.7 and 4.9 was achieved.  相似文献   

20.
针对生产过程中低品位能量回收,设计了带有环状管蒸发器的不锈钢水工质重力型分离式热管,环状管由31.6 mm管径内管热水加热,环空间隙为15.0 mm,可视化地研究了26 kPa蒸发压力,0~90 °倾斜角度下多个充注率环状管蒸发器的壁温特性。结果表明:该类热管的环状管蒸发器运行时存在一高温区,随倾角增加而扩大;环状管内蒸发侧平均表面换热系数随倾角增大先增后减、再增大,与沸腾流型随角度发生转变有密切关联;与一些相似文献进行了对比,发现环状管蒸发器与普通重力型热管在换热性能均在10~20 °倾角达到极大值,而环状管蒸发器则在90 °时达到了另一极大值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号