首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
吴立刚  王常虹  曾庆双 《控制与决策》2005,20(10):1091-1096
针对一类状态不可测的非线性不确定中立型时滞系统,基于滑模控制理论,采用线性矩阵不等式的处理方法,提出了滑动模态鲁棒渐近稳定时滞相关的充分条件,设计了一类滑模观测器,同时给出了该观测器存在的充分条件;然后应用滑模控制的趋近率方法和基于观测器所得到的系统估计状态,综合了一类滑模控制器,该控制器同时保证了估计状态下滑模面和估计误差状态下滑模面的渐近可达性;最后通过数值实例证明了该控制方案的可行性.  相似文献   

2.
滑模控制一类非线性分布式时滞系统   总被引:1,自引:0,他引:1  
针对一类状态不可测的非线性不确定分布式时滞系统, 给出了系统滑动模态鲁棒渐近稳定的充分条件. 设计了一类滑模观测器, 同时采用线性矩阵不等式的处理方法给出了该观测器存在的充分条件. 再应用滑模控制的趋近率方法和基于观测器所得到的估计状态, 综合了一类滑模控制器. 该控制器同时保证了估计状态下的滑模面和估计误差状态下的滑模面的渐近可达性.  相似文献   

3.
The purpose of fault diagnosis of stochastic distribution control systems is to use the measured input and the system output probability density function to obtain the fault estimation information. A fault diagnosis and sliding mode fault‐tolerant control algorithms are proposed for non‐Gaussian uncertain stochastic distribution control systems with probability density function approximation error. The unknown input caused by model uncertainty can be considered as an exogenous disturbance, and the augmented observation error dynamic system is constructed using the thought of unknown input observer. Stability analysis is performed for the observation error dynamic system, and the H performance is guaranteed. Based on the information of fault estimation and the desired output probability density function, the sliding mode fault‐tolerant controller is designed to make the post‐fault output probability density function still track the desired distribution. This method avoids the difficulties of design of fault diagnosis observer caused by the uncertain input, and fault diagnosis and fault‐tolerant control are integrated. Two different illustrated examples are given to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.

针对一类输入受限的不确定非仿射非线性系统跟踪控制问题, 提出一种二阶动态terminal 滑模控制策略. 在不损失模型精度, 并考虑系统输入饱和受限的前提下, 给出一种适用于全局的不确定非仿射非线性系统近似方法. 提出小波小脑模型干扰观测器设计方法, 实现复合扰动的有效逼近. 构造辅助系统分析输入饱和对跟踪误差的影响. 通过构造基于PI 滑模面的terminal 二阶滑模面, 给出二阶动态terminal 滑模控制器设计过程, 克服了传统滑模的抖振问题. 仿真结果验证了所提出方法的有效性.

  相似文献   

5.
An output feedback controller is designed for a class of uncertain nonlinear systems with relative degree higher than one. A super‐twisting sliding mode state feedback controller is designed and implemented using a high‐gain observer. It is proved that the controller achieves practical stabilization and the ultimate bound can be reduced by decreasing a design parameter. The performance of the controller is illustrated by simulation.  相似文献   

6.
This paper presents a novel approach to the problem of discrete time output feedback sliding‐mode control design. The method described applies to uncertain systems (with matched uncertainties) which are not necessarily minimum phase or relative degree one. A new sliding surface is proposed, which is associated with the equivalent control of the output feedback sliding‐mode controller. Design freedom is available to select the sliding surface parameters to produce an appropriate reduced‐order sliding motion. In order for this to be achieved, a static output feedback condition associated with a certain reduced‐order system obtained from the original plant must be solvable. The practicality of the results are demonstrated through the implementation of the controller on a small DC motor test rig. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the sliding mode observers design techniques for MIMO and as a simple example for SISO systems are systematically advanced as a first purpose. Design parameters are selected such that on the defined switching surface always is generated asymptotically stable sliding mode. Moreover, observer state error dynamics is globally robustly asymptotically stable. Then, advanced design techniques are generalized to the design of a new modification of sliding mode observers for uncertain MIMO systems with time‐delay. Robust sliding and global asymptotic stability conditions are derived by using Lyapunov‐Krasovskii V‐functional method. By these conditions observer parameters are designed such that an asymptotically stable sliding mode always is generated in observer and observer state error dynamics is robustly globally asymptotically stable. The main results are formulated in terms of Lyapunov matrix equations and inequalities. Design example for AV‐8A Harrier VTOL aircraft with simulation results using MATLAB‐Simulink show the effectiveness of proposed design approaches.  相似文献   

8.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
本文针对考虑不确定性的飞行模拟转台伺服系统,提出了一种基于非线性干扰观测器的反步全局滑模补偿控制方法。该方法采用反步控制方法设计转速期望虚拟控制,然后利用非线性干扰观测器观测系统不确定干扰,进而对引入非线性干扰观测器的系统设计自适应全局滑模控制器,实现了飞行模拟转台伺服系统期望转角信号的鲁棒跟踪控制,仿真结果表明,该方法控制效果良好,具有很好的工程应用价值。  相似文献   

10.
针对一类具有量测噪声的非线性不确定系统,设计了基于新型滑模扩张状态观测器的Terminal滑模控制方案.首先对系统进行两次状态扩张,然后设计一种新型滑模扩张状态观测器,通过采用特殊的滑模面保证观测误差在有限时间内收敛到零.在此基础上,设计Terminal滑模控制器,使系统状态也能在有限时间内收敛到零.严格的理论证明和仿真结果均证明了所设计新型滑模观测器及闭环控制方案的有效性和快速性.  相似文献   

11.
针对存在非匹配干扰的非线性系统,设计了一种基于干扰观测器和反步法的非奇异快速终端滑模控制.引入非线性干扰观测器估计系统的不确定性,利用反步的思想处理高阶非线性系统,从而可以将非线性干扰观测器估计的干扰值引入反步法的虚拟控制量中,同时设计一种新颖的非奇异快速终端滑模控制律保证系统的收敛速度和精度.利用Lyapunov函数从理论上证明了所设计的控制器可以保证闭环系统的有限时间收敛.最后通过数值仿真验证了所设计的控制方法的有效性.  相似文献   

12.
Many valuable properties of the state feedback method can not be applied to some class of control systems while some of the system states cannot be measured directly. An attractive alternative approach is to make good use of a state observer. In this paper, a new decentralized sliding mode observer (DSMO) is proposed for a class of nonlinear uncertain large‐scale systems (LSS) with lumped perturbations based on the sliding mode control (SMC) theory. Our main result presented here is that we introduce a new switching term to the traditional LSS observer design for a class of large‐scale system to generate a new decentralized sliding mode observer. The generalized matrix inverse concept is adopted to avoid using the un‐measurable state and the global reaching condition of the sliding mode for each error subsystem is guaranteed. The stability of each equivalent error subsystem is verified based on the strictly positive real concept. It also shows that the investigated uncertain large‐scale systems still possesses the property of insensitivity to the lumped perturbations as does the traditional linear system. Moreover, the state transformation approach is no longer needed as there is no longer concern about the problems of finding a suitable transformation or indirect estimated states, since the proposed DSMO is not based on the transformed system model. Finally, a numerical example with a series of computer simulations is given to demonstrate the validity of the proposed decentralized sliding mode observer.  相似文献   

13.
This paper is focused on the problem of adaptive sliding mode control design for uncertain neutral‐type stochastic systems under a prescribed H performance. A simplified state observer is put forward to estimate the unknown state variables, which could be properly incorporated for establishing a new linear‐type switching surface and the associated adaptive variable structure controller. By virtue of the adaptive control design, unknown matched perturbation and potential uncertainties can be counteracted, and the system trajectories are guaranteed to reach the predefined switching surface within finite moment in almost surely sense, and performance analysis of the closed‐loop dynamics during the sliding surface is carried out with a specified H performance. At last, two illustrative examples through computer simulations are provided to verify the effectiveness and applicability of the proposed scheme.  相似文献   

14.
The variable structure controller is designed for a class of nonlinear uncertain time-delay system by using robust observer, and incorporating H-infinity control technique, the controller can guarantee the H-infinity performance of sliding mode dynamics and satisfy the reaching condition, which also does not require uncertainties to satisfy matching condition and linear boundary condition. The simulation example is given to illustrate the method.  相似文献   

15.
A robust consensus controller is proposed for heterogeneous higher‐order nonlinear multi‐agent systems, when the agent dynamics are involved with mismatched uncertainties. A distributed consensus protocol based on a time‐varying nonhomogeneous finite‐time disturbance observer and sliding mode control is designed to realize the network consensus of higher‐order multi‐agent systems. The time‐varying finite‐time disturbance observer overcomes the problem of peaking value near the initial time caused by the constant gain one and is designed to estimate the uncertainties and to mitigate the effect of mismatched uncertainties during the sliding mode. To eliminate the chattering phenomenon and ensure finite‐time convergence to the sliding surface, the control law is designed by using the super twisting algorithm. Finally numerical simulations are given to illustrate the validity of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This paper considers the observer‐based integral sliding mode controller design problem of semi‐Markovian jumping singular systems with time‐varying delays. Firstly, by using a plant transformation and supplementary variable technique in the work of Hou et al, the discussed phase‐type semi‐Markov jump singular system is equivalently transformed into its associated Markov jump singular system. Secondly, an observer‐based sliding mode controller design problem is investigated for the associated singular Markov jump systems. The highlight of this paper is that we construct an observer‐based mode‐independent integral sliding mode surface function, which is different from the mode‐dependant sliding mode surface function in the previous literatures. Based on this, an observer‐based sliding mode controller is designed to guarantee that the associated singular Markov jump system meets the reachable condition. Finally, a practical example is presented to demonstrate the efficiency and effectiveness of our obtained results.  相似文献   

17.
A novel output‐feedback sliding mode control strategy is proposed for a class of single‐input single‐output (SISO) uncertain time‐varying nonlinear systems for which a norm state estimator can be implemented. Such a class encompasses minimum‐phase systems with nonlinearities affinely norm bounded by unmeasured states with growth rate depending nonlinearly on the measured system output and on the internal states related with the zero‐dynamics. The sliding surface is generated by using the state of a high gain observer (HGO) whereas a peaking free control amplitude is obtained via a norm observer. In contrast to the existing semi‐global sliding mode control solutions available in the literature for the class of plants considered here, the proposed scheme is free of peaking and achieves global tracking with respect to a small residual set. The key idea is to design a time‐varying HGO gain implementable from measurable signals. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a robust control scheme is proposed for a class of time-delay uncertain nonlinear systems with unknown input using the sliding mode observer. The sliding mode state observer is given with radial basis function neural networks, and then the robust control scheme is presented based on the designed sliding mode observer. The developed observer-based control scheme consists of two parts. One term is a linear controller and the other term is a neural network controller. Using the Lyapunov method, a criterion for bounded stability of the closed-loop system is developed in terms of linear matrix inequalities. Finally, a simulation example is used to illustrate the effectiveness of the proposed robust control scheme.  相似文献   

19.
In this paper, we propose a discrete‐time nonlinear sliding mode observer for state and unknown input estimations of a class of single‐input/single‐output nonlinear uncertain systems. The uncertainties are characterized by a state‐dependent vector and a scalar disturbance/unknown input. The discrete‐time model is derived through Taylor series expansion together with nonlinear state transformation. A design methodology that combines the discrete‐time sliding mode (DSM) and a nonlinear observer design is adopted, and a strategy is developed to guarantee the convergence of the estimation error to a bound within the specified boundary layer. A relation between sliding mode gain and boundary layer is established for the existence of DSM, and the estimation is made robust to external disturbances and uncertainties. The unknown input or disturbance can also be estimated through the sliding mode. The conditions for the asymptotical stability of the estimation error are analysed. Application to a bioreactor is given and the simulation results demonstrate the effectiveness of the proposed scheme. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, observer‐based sliding mode control is considered for networked control systems subject to quantization, in which packet dropout may happen when the measurement output is transmitted from the sensor to the controller. Firstly, a compensating scheme is proposed to deal with the effect of packet loss modelled as a Bernoulli process. Then, by means of available output information and state observer, the desirable sliding mode controller is designed. Furthermore, both the reachability and the stochastic stability of sliding mode dynamics can be attained and the corresponding sufficient conditions are derived. Finally, numerical simulation results are provided to illustrate the proposed control law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号