首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以新疆风化煤(XWC)为原料,硝酸钠溶液为浸渍液,采用浸渍联合微波辐照制备出钠型煤基吸附剂(SCA)。通过考察溶液pH值、吸附剂用量、反应时间及溶液初始质量浓度等因素,研究了SCA对Zn~(2+)的吸附特性。结果表明:在溶液pH值为5~11,加入量为0.3 g,溶液温度为室温的条件下,20 min内对质量浓度小于等于800 mg/L的含Zn~(2+)废水去除率达99.00%以上。经过改性后的SCA最大吸附容量为188.7 mg/g,是改性前XWC的4.2倍。改性前后的风化煤对Zn~(2+)吸附动力学均符合准二级动力学方程,吸附等温线均符合Langmuir等温模型。  相似文献   

2.
针对矿山废水酸度高、重金属离子处理成本过高的问题,采用膨润土、钢渣复合颗粒吸附重金属离子,从去除率、质量散失率、碱度释放量对复合颗粒制备工艺进行探讨,并研究其吸附性能影响因素,用此颗粒处理模拟酸性矿山废水(AMD)。结果表明:膨润土、钢渣配比5∶5,Na_2CO_3用量5%,焙烧粒径2 mm,500℃下焙烧60 min,吸附剂投放量10.5 g/L,反应时间240 min,振荡速率100 r/min,反应温度25℃,对Fe~(2+)、Mn~(2+)、Cu~(2+)、Zn~(2+)去除率分别为98.84%、94.93%、99.26%、96.85%,出水pH值为8.42,该复合颗粒既能去除重金属离子又能降低AMD酸度,是一种高效、环保、经济的AMD处理吸附剂。  相似文献   

3.
通过焙烧实验和振荡吸附实验,研究了城市污泥.膨润土颗粒吸附剂的制备及其在含铅离子废水中的吸附特性.结果表明,颗粒吸附剂制备的最佳组合条件为城市污泥:膨润土=6:4(质量比),粒径为1.2mm,在550℃下焙烧2h;在温度为25℃左右,pH值为4,Pb~(2+)初始浓度为30mg/L、吸附剂用量为10g/L、吸附时间为30min条件下,吸附剂对废水中的Pb~(2+)的去除效率可达92.55%.吸附剂对Pb~(2+)的吸附符合Langmuir吸附方程.  相似文献   

4.
选煤厂分选产生的大量浮选尾煤给环境带来了很大的影响,本文通过焙烧法将浮选尾煤进行隔氧惰性氛围焙烧处理,以求获得对重金属具有较好吸附活性的尾煤吸附材料,减少尾煤与重金属废水对环境的污染.结果 表明,在焙烧温度为800℃、反应温度为45℃、反应时间为3h、溶液pH值为3、吸附剂投放量为1.5g/200 mL、初始Cr(Ⅵ)浓度为20 mg/L的条件下,制备的尾煤吸附剂使得浮选尾煤对水中Cr(Ⅵ)去除率从67%提高到99%.SEM-EDS、XRD、BET和FTIR进行分析结果发现,焙烧改性浮选尾煤比表面积增大,孔隙增加,结晶度增加,有机碳链结构减少,易与Cr(Ⅵ)形成离子键,满足作为良好吸附剂材料的要求.  相似文献   

5.
将粉煤灰、硅藻土复合焙烧改性后制得吸附剂——粉煤灰-硅藻土复合材料,并将其应用于吸附选矿废水中的Cr(Ⅵ),考察了溶液Cr(Ⅵ)初始浓度、pH值、吸附剂投加量、吸附温度、吸附时间等参数对吸附剂吸附Cr(Ⅵ)效果的影响。结果表明:粉煤灰与硅藻土复合焙烧改性后,材料孔隙增加,比表面积增大; 粉煤灰-硅藻土复合材料对Cr(Ⅵ)的吸附是一个自发的吸热过程,以物理吸附为主。在溶液Cr(Ⅵ)初始浓度10 mg/L、pH=2、粉煤灰-硅藻土复合材料投加量20 g/L、吸附温度60 ℃、吸附时间6 h条件下,500 ℃焙烧2 h制得的粉煤灰-硅藻土复合材料对废水中Cr(Ⅵ)去除率可达70.6%。  相似文献   

6.
改性膨润土吸附废水中氨氮的试验研究   总被引:8,自引:0,他引:8  
通过用Al2(SO4)3溶液-焙烧制备了改性膨润土吸附剂,探讨了它对水中氨氮的吸附性能。试验表明,制备改性膨润土吸附剂时恰当的Al2(SO4)3浓度为4%,最佳焙烧温度为500℃。同时采取不同的试验条件探讨了改性膨润土吸附氨氮的效果。结果表明,当溶液pH值为10、吸附剂投加量为4g/L、接触时间在60min时,氨氮的去除效率可达95%以上。  相似文献   

7.
研究了电气石对酸性废水中Cu~(2+)的吸附作用。考察了试验配水的初始pH值、吸附时间、Cu~(2+)起始浓度等对电气石去除Cu~(2+)的影响。结果表明:电气石能有效地从酸性废水中去除Cu~(2+)吸附速率快,去除率较高。温度为25℃,废水初始pH值为4.0时,采用朗缪尔吸附等温式计算出电气石对Cu~(2+)的最大吸附量为2.49 mg/g。准二级模型较好地拟合了电气石吸附Cu~(2+)的动力学数据。电气石吸附Cu~(2+)过程中存在物理吸附和化学吸附。为今后电气石在酸性重金属废水方面研究及应用提供依据。  相似文献   

8.
改性膨润土吸附剂的制备及对苯酚的吸附性能   总被引:6,自引:0,他引:6  
采用AlCl3改性膨润土制备含苯酚废水吸附剂。研究了AlCl3投加量、焙烧温度对吸附剂性能的影响,探讨了改性膨润土用量、接触时间、溶液pH、改性膨润土投加方式等对改性膨润土吸附苯酚的影响。结果表明,经过改性和450℃焙烧的改性膨润土对苯酚的去除效果优于原土和活性炭,在原水苯酚浓度为200mg/L、pH=8.5、接触时间为30min、改性膨润土投加量为4g/L时,对苯酚的去除率可以达到92.2%;采用分批投药的方式,苯酚去除率可达99.7%。  相似文献   

9.
为提升蛇纹石尾渣(ALS)对重金属污染物Cu2+的去除效果,实现废水中Cu2+的高效去除,开展了蛇纹石尾渣碱浸改性研究,系统探究改性后蛇纹石尾渣吸附材料(AALS)对废水中Cu2+去除性能的影响。结果表明,当蛇纹石尾渣与氢氧化钠质量比为1∶0.12、改性温度为30.0℃、改性时间为90.0min时,改性效果最佳。利用BET、SEM、XRD和FTIR等分析方法考察了碱浸改性蛇纹石尾渣的改性机理。结果表明,碱浸改性致使蛇纹石尾渣的比表面积从22.62m2/g提高到67.19m2/g,碱可以侵蚀蛇纹石浸渣的结构,导致其暴露出更多Si—O—Si、Si—O官能团,增加了颗粒表面的Cu2+吸附位点。AALS对溶液中Cu2+的最佳吸附条件为AALS用量为0.15g、吸附时间为15min、溶液p H值为5.39,此时其对50.0m L浓度为125.0mg/LCu2+溶液中Cu2+的吸附量及Cu2+...  相似文献   

10.
将赤泥通过盐酸改性,得到改性赤泥,以改性赤泥为载体,氧化铈为活性组分,制备了赤泥负载铈吸附剂.在25℃和静态条件下,对赤泥负载铈吸附剂处理含磷废水进行了研究,探讨了赤泥负载铈吸附剂的制备条件、赤泥负载铈吸附剂用量、废水pH值、吸附时间及磷的浓度对除磷效果的影响.结果表明,赤泥负载铈吸附剂的制备条件为:盐酸浓度为6mol/L,赤泥负载铈的反应时间为16h,四水硫酸铈浓度为0.4g/L,焙烧温度为500℃;在废水pH值为5.0,磷浓度0~100mg/L范围内,吸附时间为90min,按磷与赤泥负载铈吸附剂质量比为1︰80投加赤泥负载铈吸附剂进行处理,磷的去除率可达97%以上.利用Langmuir吸附等温式对吸附数据进行拟合,得到25℃下的线性相关性R2=0.9919,吸附剂的饱和吸附量为44.65mg/g.磷在吸附剂表面的吸附是单分子层吸附.  相似文献   

11.
易龙生  刘苗  吴倩 《矿冶工程》2020,40(6):103-107
以粉煤灰制备的地聚物泡沫材料为原料,通过浸渍-焙烧的方法制备镧改性泡沫材料,研究了镧改性泡沫材料对含磷废水的吸附效果。结果表明,镧改性实验的最佳条件为: 氯化镧溶液pH=9、镧离子浓度0.3%、固液比1∶25、焙烧温度300 ℃、焙烧时间2 h; 吸附实验的最佳条件为: 镧改性材料用量2 g/L、废水pH=7、含磷废水浓度5 mg/L、吸附时间2 h,此条件下镧改性泡沫材料对磷的去除率达90.3%。机理分析结果表明,镧只存在于泡沫材料的表面,并未进入泡沫材料的硅氧四面体骨架中; 吸附过程中,磷只是与泡沫材料表面的镧发生了化学吸附,生成的磷酸镧络合物并未进入泡沫材料的四面体骨架中。  相似文献   

12.
以凹凸棒土为载体,硝酸铁为活性前躯体,通过浸渍-焙烧法制得铁改性凹凸棒土,并将其应用于废水中甲醛的吸附。研究了不同负载化合物、硝酸铁含量、焙烧温度、吸附剂加入量、吸附时间对铁改性凹凸棒土吸附甲醛效果的影响。结果表明:以凹凸棒土为载体,硝酸铁含量为20%,500℃下焙烧3 h得到吸附剂;在25℃、吸附剂加入量为12 g/L、吸附76 h时,铁改性凹凸棒土对甲醛的去除率为92.22%。该吸附过程符合Langmuir吸附模型,饱和吸附量为3.8399 mg/g。并且吸附过程符合准二级动力学模型。  相似文献   

13.
改性高岭土处理含油废水的实验研究   总被引:2,自引:0,他引:2  
用硫酸铝和活性炭高温焙烧改性高岭土.探究改性高岭土对舍油废水的吸附性能,实验结果表明:吸附剂量为12g/L时,在室温和pH值为6的条件下,对700-800mg/L的柴油溶液吸附30min吸附效果最好,在处理实际废水中,改性高岭土对柴油的去除率也高达99%以上.  相似文献   

14.
利用自制季铵型淀粉改性重质碳酸钙,制备吸附重金属Cd~(2+)的新型螯合吸附剂。通过静态和动态实验探究新型螯合吸附剂吸附性能,用原子吸收分光光度计测定溶液中Cd~(2+)的浓度。结果表明,新型螯合吸附剂对Cd~(2+)的最优静态吸附条件为:新型螯合吸附剂用量为12 g/L、时间为3 h、pH值为6.5、常温,在最优条件下吸附率为99.88%。动态吸附结果表明:通过固定床实现对重金属Cd~(2+)的吸附,可以应用到实际吸附工艺中。红外光谱分析表明:新型螯合吸附剂中重质碳酸钙表面被自制季铵型淀粉包覆。  相似文献   

15.
李晔  张猛  朱丽  马啸  胡进  郑方钊 《金属矿山》2011,40(9):160-163
通过浸渍CTMAB法制备有机改性赤泥吸附剂,并探讨改性赤泥吸附剂对磷的吸附性能。结果表明:当浸渍液CTMAB质量浓度为8 g/L、焙烧温度为500 ℃、模拟含磷废水初始浓度为5 mg/L、废水pH=3、振荡时间为60 min时,改性吸附剂对磷的去除率达到90%以上。根据试验结果建立了改性吸附剂吸附磷的Freundlich等温线模型,通过热力学分析揭示出该吸附过程可自发进行。  相似文献   

16.
为开发天然钙基膨润土在处理含铜废水和铜污染土壤修复方面的应用,以广西田东天然钙基膨润土为原料,采用批式吸附试验考察不同温度下膨润土用量、初始pH和溶液初始浓度对Cu~(2+)吸附效果的影响,研究膨润土对Cu~(2+)的吸附过程动/热力学特征。当膨润土用量为5 g/L、初始pH值为5,温度为35℃和Cu~(2+)初始质量浓度为300 mg/L时,膨润土对Cu~(2+)饱和吸附量为42.84 mg/g;热力学计算结果表明,吸附是自发、吸热的过程;准二级吸附动力学方程和Langmuir吸附等温线拟合结果表明,膨润土对Cu~(2+)的吸附为单分子层吸附、以化学吸附为主;结合平衡时溶液中Ca~(2+)、Mg~(2+)、Na~+、K~+浓度变化规律及吸附前后层间距变化,证实主要吸附类型为离子交换吸附。天然钙基膨润土对Cu~(2+)的吸附效果较好,在含铜废水处理和铜污染土壤修复领域是一种经济环保且有应用前景的非金属矿物材料。  相似文献   

17.
改性膨润土处理含油废水的试验研究   总被引:2,自引:0,他引:2  
以3种改性后的鄂州膨润土为吸附剂,通过固液接触时间、吸附剂用量、溶液初始浓度、乳化剂含量等因素,系统研究了改性膨润土对废水中油的吸附效果,并通过红外光谱分析了吸附剂的变化特征。结果表明,1831-膨润土的吸附效果最好,其吸附最佳工艺是吸附时间1 h,投加量3 g/L,溶液浓度50 mg/L,乳化剂用量0.1mL/L,油去除率可达95%以上。  相似文献   

18.
分别选用NaOH、NaCl和Na_2CO_3 3种钠化剂进行半干法钠化试验,确定最优钠化剂为Na_2CO_3。在不同条件下分别进行钠化改型试验研究,当Na_2CO_3用量为膨润土的2.0%,补加水量为20%时,钠化效果最佳。吸附含油废水结果表明,吸附剂用量为4 g/200m L,p H值为6.05,吸附时间120 min时,除油率最佳。  相似文献   

19.
近年来我国城市饮用水中不断出现硝酸盐超标的问题,严重影响了饮用水水质,威胁人体健康。为了进一步提高去除水中硝酸盐的效果,我们研发了一种经济高效的水中硝酸盐吸附剂——十八烷基三甲基氯化铵改性煤基活性炭(OTAC-GAC),采用正交实验方法确定了OTAC-GAC的最优制备条件和对水中硝酸盐的最大吸附效能,并通过动力学吸附拟合和表面物化特性分析探究了OTAC-GAC对水中硝酸盐的吸附机理。研究表明,当以煤基活性炭为母体、以OTAC为改性剂时,季铵盐改性煤基活性炭的最佳制备条件为:改性剂浓度5 mmol/L,改性温度20℃,改性时间2 h;优化后的OTAC-GAC对硝酸盐的最大吸附量为22.05 mg/g,比改性前提高了15.31 mg/g,且OTAC-GAC对硝酸盐的吸附符合准二阶动力学吸附模型(R~2=0.999)、Langmuir等温吸附模型(R~2=0.913)和D-R等温吸附模型;此外,与改性前相比,OTAC-GAC的总孔容量减少了47%,N元素含量提高了44%,碱性官能基团含量增加了3.4倍,说明改性后带正电、含氮的OTAC已成功负载在煤基活性炭表面孔隙内,从而可推测出改性煤基活性炭去除硝酸盐的主要机理为离子交换和静电吸附作用,为保障饮用水安全奠定了理论基础。  相似文献   

20.
金矿氰化废水组合催化体系催化氧化除氰研究   总被引:1,自引:0,他引:1  
筛选了Na_2S·9H_2O+Cu~(2+)作为组合催化氧化除氰体系,对金矿含氰废水进行除氰试验,结果表明,该组合催化体系处理某矿山实际含氰废水,除氰率达99%以上,经一级处理即可达标排放。通过分析铜离子在含氰溶液中的存在形态及其对活性炭吸附容量的影响和Na_2S·9H_2O对浸铜碳吸附容量的影响,探讨了Na_2S·9H_2O+Cu~(2+)组合催化体系的催化除氰机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号