首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
再生制动是目前电动汽车的研究热点。以制动时电机制动转矩恒定及启动时超级电容电能优先利用为目的,设计了一种新的再生制动主电路拓扑结构和控制策略。在Simulink仿真环境下搭建系统数学模型,在理论上对再生制动系统进行仿真和研究,最后分析对比实验和仿真数据。结果表明,此再生制动控制策略在车辆制动过程中能够有效地控制电机制动转矩和回收动能,提高了电动汽车的续驶里程。  相似文献   

2.
《微电机》2015,(5)
在分析电动汽车车载条件下,基于双能量源的永磁同步电机系统在驱动与制动能量回收过程中的若干特性。与普通电驱动系统的区别在于,该双能量源系统由超级电容和动力电池组合而成,因此双能源的组成拓扑结构和功率分配方案就直接影响到电机驱动和制动的特性。通过给出的组合方式和控制策略,该系统可有效地实现电动汽车加速与制动时为电机提供加速能量以及高效回收电机制动能量,并能够做到能量在超级电容和动力电池的合理分配。仿真结果验证了该系统的可行性与有效性。  相似文献   

3.
《微电机》2016,(7)
为增加电动汽车续驶里程,提高电机运行效率,研究电动车用感应电机制动控制策略,建立感应电机带定子铁损的数学模型,以直接转矩控制系统为框架,采用效率最优化与无速度传感器控制相结合的策略。利用Matlab/Simulink搭建了该控制策略模型。仿真结果表明所提控制策略在无速度传感器模型跟踪转子速度的同时,使感应电机效率达到最优控制,可提高电机运行效率。  相似文献   

4.
就电动汽车能量回馈制动效率较低的问题提出了一种恒转矩模糊控制策略。首先分析了无刷直流电机能量回馈制动的基本原理,对不同的回馈控制策略进行了对比分析,设计了一个三维模糊控制器,再以该控制器为核心,在MATLAB/Simulink环境中搭建了无刷直流电机能量回馈制动系统的仿真模型,并进行仿真。仿真结果显示提出的控制策略对电机制动转矩以及能量回收达到了很好的控制效果。  相似文献   

5.
基于轮毂电机驱动的电动汽车的结构特点以及轮毂电机低转速、高转矩的特点,提出了轮毂电机再生制动方法。为了恢复最大制动能量,在中等强度制动条件下通过轮内电机输出车辆减速的所有制动转矩。由AMESim软件建立液压制动系统和轮毂电机驱动系统的车辆动力学模型。通过NEDC循环和FTP75循环对车辆驾驶条件进行了仿真。仿真结果表明:采用轮内电机制动方式,制动能量回收率显著提高,电动车的能源效率提高30%以上。  相似文献   

6.
电动汽车电驱动系统高速区快响应控制策略   总被引:1,自引:0,他引:1  
电动汽车电驱动系统要求宽调速范围内转矩响应迅速,同时要有较高的效率.本文首先结合汽车典型循环工况,分析了电动汽车行驶过程中电动机的工作特点,给出了一种基于损耗模型的感应电机效率优化方法,并探讨了其在基频以上的最优磁通选择限制;然后在分析优化运行对感应电机动态响应速度影响的基础上,提出一种适用于基频以上的快速转矩响应控制策略,根据动态过程中电压限制的偏移调整分配电机的励磁和转矩电流给定,突破了基于稳态分析的最大转矩控制策略在分析和解决动态过程转矩输出能力问题时的局限性;并以TMS320LF2407A DSP为控制核心组建了实验系统.仿真和实验结果表明,提出的控制策略可在动态中提供较大的转矩输出,减小了采用效率优化控制对电动汽车高速运行时动态响应速度的影响.  相似文献   

7.
电动汽车永磁同步电机最优制动能量回馈控制   总被引:12,自引:0,他引:12  
永磁同步电机具有高效率、高转矩密度等优点,被广泛地用作电动汽车牵引电机。永磁同步电机通常采用磁场定向(field oriented control,FOC)控制算法实现最大效率控制。该文研究永磁同步电机在磁场定向控制下的制动原理,结合电动汽车驱动系统(包括永磁同步电机、逆变器和电池)模型,进而分析电动汽车最优制动能量回馈控制策略。根据现有的电动汽车电气和机械耦合制动方案,对比分析常用的并联制动控制策略和串联制动控制策略,得出串联制动控制策略可实现最优的能量回馈制动,并联制动控制策略通过改变机械制动的自由行程可实现较好的能量回馈制动。  相似文献   

8.
一种电动汽车能量高效回馈制动方法   总被引:2,自引:0,他引:2  
为提高电动汽车的能量利用率,提出了一种将可变电压系统作为电机驱动系统实现能量回馈的方法,利用可串并联切换的超级电容器组与双向直流功率变换器相结合,采用了2种回馈制动模式的控制策略,提高了电机到驱动系统电源之间能量流的传递效率和变换效率,实现了速度大范围变化的能量回馈。与常规制动方法相比,上述方法具有驱动系统体积小、成本低、能量回馈效率高的特点,通过计算机仿真对采用不同回馈制动方法时的3种情况进行了对比分析,仿真结果验证了该方法的可行性和有效性。  相似文献   

9.
电动汽车用感应电机最小损耗Hamilton控制   总被引:1,自引:0,他引:1  
针对电动汽车电驱动系统的非线性特点,采用端口受控Hamilton系统理论研究了考虑铁损的电动汽车用感应电动机系统的最小损耗控制问题.首先,根据基于损耗模型的感应电机能量优化控制策略得到系统稳态时的优化结果,然后在这一稳态目标下,利用系统的互联和阻尼配置以及能量成形对考虑铁损的感应电机进行Hamilton控制,最后通过仿真实验,验证了在相同的稳态目标下,采用本文的控制算法可使得电机能量损耗明显降低,同时本文采用的控制策略与基于矢量控制的优化控制策略相比,具有收敛速度快、转速波动小等优点,为高性能要求的电动汽车电驱动系统高效运行提供了新的途径.  相似文献   

10.
电动汽车驱动电机效率优化控制策略研究   总被引:1,自引:0,他引:1  
针对电动汽车感应电动机变频驱动系统存在的轻载低效问题,研究了其效率优化控制策略。首先根据交流电机理论,给出了同步旋转坐标系下考虑铁损的感应电动机等效电路,然后在分析电动机损耗的基础上,给出了一种基于损耗模型的感应电动机变频驱动系统效率优化控制策略。实验结果表明,该感应电动机效率优化控制策略节能效果明显,且具有结构简单、寻优速度快,转矩和磁链波动小等优点,为电动汽车驱动系统的高效运行提供了有效途径。  相似文献   

11.
电动汽车为了延长续驶里程,需要将电动汽车制动时的能量进行回收,而电机的制动效果直接影响着汽车的安全性和舒适性。提出了一种基于模型预测电流控制的恒值电流回馈制动控制策略。首先介绍了无刷直流电机控制系统单管调制的回馈制动原理,推导出了回馈制动的数学模型公式,然后建立了制动电流闭环调节系统,采用模型预测控制策略对回馈制动电流进行调节,控制回馈制动电流和转矩保持恒定。最后搭建了系统实验平台,实验结果验证了所提出控制策略的有效性,制动过程中制动电流和制动力矩保持稳定。  相似文献   

12.
集中驱动式电动汽车的传动机构中,半轴特性会导致车辆紧急制动时利用电机进行车轮滑移率的精确控制变得困难。针对该类纯电动汽车,建立相应动力总成模型,在频域内分析电机制动力的传递特性及其对制动效果的影响;利用扩展卡尔曼滤波器进行半轴力矩的状态估计;提出两种车辆紧急制动工况下的电机—液压制动力协调控制方法,包括以液压制动为主、电机制动为辅的液压制动力动态控制方法以及以电机制动为主、液压制动为辅的半轴力矩补偿控制方法。仿真及台架试验结果表明,所提出的半轴力矩补偿控制方法可大大降低半轴特性对电机防抱死制动控制效果的不良影响,能够充分利用电机进行车辆的紧急制动;与传统摩擦制动防抱死控制相比,提升了整车制动效果,并降低了摩擦制动系统的要求。  相似文献   

13.
This paper shows the possibility and effectiveness of using an electric brake of motor railcar rolling stock with an asynchronous traction drive as an automatic brake. Since electric braking is unaffected by low temperatures and it can provide high efficiency protection from wheel slipping and skidding when integrated into a traction drive control system, as well as control braking torque with a high speed. Many motor axes and, hence, high power railcar rolling stock can provide less braking distance at electric braking than does pneumatic braking, which is especially important for emergency braking. However, an electric brake can be used as an automatic one only if it can be driven even in the case of loss of power from the catenary or diesel generator. The possibility in principle and the workability of using an electric brake as an automatic one are analyzed on the basis of mathematical simulations. The electromagnetic processes in an asynchronous traction drive under such conditions are considered, and the actuation time of an electric brake in the absence of supplied power is determined.  相似文献   

14.
阐述了异步电机电制动的控制策略;分析实际应用中低速电制动转矩出现偏差的原因,并通过MATLAB绘制出当定向角度出现偏差时给定转矩与实际转矩在三维空间中的比例关系。为解决低速电制动时由于转子磁场定向偏差引起电机转矩不准的问题,采用基于无功功率模型的转子时间常数自适应控制进行校正。试验结果表明该控制策略可以实现校正转子磁场定向偏差的功能,具有良好的动态性能,可以满足地铁列车的性能要求。  相似文献   

15.
针对开关磁阻电机再生制动控制中存在制动电流波动大的问题,提出一种基于电流预测的开关磁阻电机再生制动控制方法。分析了电机制动过程中其对应功率开关的工作模式及相应状态向量的确定方法,研究了基于电流预测的开关磁阻电机再生制动控制的具体设计方法,并对其效果进行了仿真验证,同时与传统变制动相电压占空比控制法进行了对比仿真分析,结果表明,该控制方法相对于传统变制动相电压占空比控制方法显著减小了电机制动电流和制动转矩的波动程度,从而有效提高了其制动运行的稳定性,具有较好的应用价值。  相似文献   

16.
基于电池SOC的永磁同步电机能量回馈策略研究   总被引:1,自引:0,他引:1  
相对于传统的机械制动方法,电动汽车的再生制动能够有效减小能量损耗,在满足汽车减速性能的前提下,提高能量回收效率,保证动力电池安全、可靠工作。通过研究永磁同步电机(permanent magnet synchronous motor,PMSM)的制动性能和动力电池在制动过程中的荷电状态(state of charge,SOC)变化,建立了电动汽车的PMSM动力模型和动力电池SOC能量回馈模型。在此基础上,给出了确定再生制动能量回馈最优工作点的策略,合理分配机械制动和再生制动在电动汽车制动过程中所占的比重。最后搭建了电动汽车动力系统模型,仿真结果表明,所提出的能量管理策略能够在保证减速性能和电池安全的前提下提高能量回收效率。  相似文献   

17.
在轨道交通领域,停车制动技术的性能,一方面会影响停车过程的舒适性,另一方向会影响停车的对标精度。目前的停车制动方式为电空联合制动,即在较低速时开始切除电制动,使用空气制动停车,但这种方式存在诸多的缺陷。为了进一步提升停车的性能,该文提出了一种纯电制动停车技术,该技术无需增加任何的硬件设施,采用自然换向的策略,使电机在低速下进行反接制动停车。,文充分考虑了停车的平稳性问题,设计了一种平均冲动率最小的反接制动方式。电机平台以及实车的实验验证了文方案的可行性。  相似文献   

18.
并联式混合动力汽车再生制动控制策略研究   总被引:1,自引:0,他引:1  
为提高并联式混合动力汽车(Parallel Hybrid Electric Vehicle,PHEV)再生制动能量的回收率,该文对PHEV制动力进行了分析,提出了再生制动控制策略。该策略不但能够合理分配前后轮制动力,而且能够合理分配后轮液压制动力、电机制动力和发动机反拖制动力,在保证制动性能的前提下,使电机能够最大限度的回收制动能量。仿真结果表明了所提方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号