首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 434 毫秒
1.
This work investigates the degradation of an individual gas diffusion layer (GDL) by repeated freezing cycles. The pore size distribution, gas permeability, surface structure, and contact angle on the surface of the GDL were measured in four different types of GDL: SGL paper with a microporous layer (MPL); SGL paper with 5 wt% of polytetrafluoroethylene (PTFE) loading; Toray paper without PTFE loading; and Toray paper with 20 wt% of PTFE loading. After repeated freezing cycles, the porosity of the GDL without PTFE was reduced by 27.2% due to the volumetric expansion of the GDL. The peak of the log differential intrusion moved toward a smaller pore diameter slightly because of the repeated freezing process. The crack of the MPL increased in its width and length after repeated freezing cycles. The through-plane gas permeability of the GDL with the MPL doubled after repeated freezing cycles due to the growth of the crack in the MPL, but was very small for the GDLs with Toray paper. Besides, the GDLs with PTFE loading showed a relatively larger decrease in the contact angle on the surface than the GDL without PTFE loading due to the separation of PTFE from the carbon fiber during the repeated freezing process.  相似文献   

2.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

3.
Micro porous layer (MPL) is a carbon layer (~15 μm) that coated on the gas diffusion layer (GDL) to enhance the electrical conduction and membrane hydration of proton exchange membrane fuel cell (PEMFC). However, the liquid transport behavior from MPL to GDL and its impact on water management remain unclear. Thus, a three-dimensional volume of fluid (VOF) model is developed to investigate the effects of MPL crack properties on liquid water saturation, liquid pathway formation, and the two-phase mass transport mechanism in GDL. Firstly, a stochastic orientation method is used to reconstruct the fibrous structure of the GDL. After that, the liquid water saturation calculated from the numerical results agrees well with the experimental data. With considering the full morphology of the overlap between MPL and GDL, it's found that this overlap determines the preferred liquid emerging port of both MPL and GDL. Three crack design shapes in MPL are proposed on the base of the similarity crack formation processes of soil mud. In addition, the effects of crack shape, distance between cracks, and crack number on liquid water transport from MPL to GDL are investigated. It is found that the liquid water saturation of GDL increases with crack number and the distance between cracks, while presents little correlation to the crack shape. Hopefully, these results can help the development of PEMFC models without reconstructing full MPL morphology.  相似文献   

4.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

5.
Understanding the icing characteristics of proton-exchange membrane fuel cells (PEMFCs) is essential for optimizing their cold-start performance. This study examined the effects of start-up temperature, current density, and microporous layer (MPL) hydrophobicity on the cold-start performance and icing characteristics of PEMFCs. Further, the cold-start icing characteristics of PEMFCs were studied by testing the PEMFC output voltage, impedance, and temperature changes at different positions of the cathode gas diffusion layer. Observation of the MPL surface after cold-start failure allowed determination of the distribution of ice formation at the catalytic layer/MPL interface. At fuel cell temperatures below 0 °C, supercooled water in the cell was more likely to undergo concentrated instantaneous freezing at higher temperatures (−4 and −5 °C), whereas the cathode tended to freeze in sequence at lower temperatures (−8 °C). In addition, a more hydrophobic MPL resulted in two successive instantaneous icing phenomena in the fuel cell and improved the cold-start performance.  相似文献   

6.
Takemi Chikahisa 《传热工程》2013,34(2-3):258-265
In polymer electrolyte membrane (PEM) fuel cells, the generated water transfers from the catalyst layer to the gas channel through microchannels of different scales in a two phase flow. It is important to know details of the water transport phenomena to realize better cell performance, as the water causes flooding at high current density conditions and gives rise to startup problems at freezing temperatures. This article presents specifics of the ice formation characteristics in the catalyst layer and in the gas diffusion layer (GDL) with photos taken with an optical microscope and a cryo scanning electron microscope (cryo-SEM). The observation results show that cold starts at –10°C result in ice formation at the interface between the catalyst layer and the microporous layer (MPL) of the GDL, and that at –20°C most of the ice is formed in the catalyst layer. Water transport phenomena through the microporous layer and GDL are also a matter of interest, because the role of the MPL is not well understood from the water management angle. The article discusses the difference in the water distribution at the interface between the catalyst layer and the GDL arising from the presence of such a microporous layer.  相似文献   

7.
The primary removal of product water in proton exchange membrane (PEM) fuel cells is through the cathode gas diffusion layer (GDL) which necessitates the understanding of vapor and liquid transport of water through porous media. In this investigation, the effect of microporous layer (MPL) coatings, GDL thickness, and polytetrafluorethylene (PTFE) loading on the effective water vapor diffusion coefficient is studied. MRC Grafil, SGL Sigracet, and Toray TGP-H GDL samples are tested experimentally with and without MPL coatings and varying PTFE loadings. A dynamic diffusion test cell is developed to produce a water vapor concentration gradient across the GDL and induce diffusion mass transfer. Tests are conducted at ambient temperature and flow rates of 500, 625, and 750 sccm. MPL coatings and increasing levels of PTFE content introduce significant resistance to diffusion while thickness has negligible effects.  相似文献   

8.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   

9.
In this study, porous components of a proton exchange membrane (PEM) fuel cell, i.e., single-layer gas diffusion layer (GDL, carbon paper), double-layer GDL (microporous layer (MPL) deposited carbon papers), and catalyzed electrodes, are subjected to 60 repetitive freeze-thaw cycles between −40 °C and 30 °C under water-submerged conditions; and their morphological and microstructural characteristics are investigated at each 15 cycles and compared with those of virgin materials. The results indicate that consecutive cycling of temperature causes different degradation patterns in different components. The single-layer GDL shows a unique degradation mechanism, in which macro-scale pores volumetrically expand, and relatively small-scale hollows and cracks form on the polymeric binder and carbon fiber interfaces, respectively. For the double-layer GDL, large-scale surface cracks form on the MPL surface after 15 cycles, and the morphology and microstructure degradation gains momentum with the formation of these cracks, and upon completion of 30 cycles, large-scale carbon/hydrophobic agent flakes start to detach from the surface. For the catalyzed electrodes, due to their inherently cracked surface, the catalyst layers (CLs) degrade first through expansion of the cracks in the in- and through-plane directions, and then through swelling and agglomeration of the ionomer; and combination of these two patterns triggers detachment of large CL flakes from the surface, negatively affecting the microstructure.  相似文献   

10.
It is well known that a micro-porous layer (MPL) plays a crucial role in the water management of polymer electrolyte fuel cells (PEFCs), and thereby, significantly stabilizes and improves cell performance. To ascertain the exact roles of MPLs, a numerical MPL model is developed in this study and incorporated with comprehensive, multi-dimensional, multi-phase fuel-cell models that have been devised earlier. The effects of different porous properties and liquid-entry pressures between an MPL and a gas diffusion layer (GDL) are examined via fully three-dimensional numerical simulations. First, when the differences in pore properties and wettability between the MPL and GDL are taken into account but the difference in the entry pressures is ignored, the numerical MPL model captures a discontinuity in liquid saturation at the GDL|MPL interface. The simulation does not, however, capture the beneficial effects of an MPL on cell performance, predicting even lower performance than in the case of no MPL. On the other hand, when a high liquid-entry pressure in an MPL is additionally considered, the numerical MPL model predicts a liquid-free MPL and successfully demonstrates the phenomenon that the high liquid-entry pressure of the MPL prevents any liquid water from entering the MPL. Consequently, it is found from the simulation results that a liquid-free MPL significantly enhances the back-flow of water across the membrane into the anode, which, in turn, helps to avoid membrane dehydration and alleviate the level of GDL flooding. As a result, the model successfully reports the beneficial effects of MPLs on PEFC performance and predicts higher performance in the presence of MPLs (e.g., an increase of 67 mV at 1.5 A cm−2). This study provides a fundamental explanation of the function of MPLs and quantifies the influence of their porous properties and the liquid-entry pressure on water transport and cell performance.  相似文献   

11.
The gas diffusion layer (GDL) covered with a microporous layer (MPL) is being widely used in proton exchange membrane fuel cells (PEMFCs). However, the effect of MPL on water transport is not so clear as yet; hence, many studies are still being carried out. In this study, the effect of MPL on the performance degradation of PEMFCs is investigated in repetitive freezing conditions. Two kinds of GDL differentiated by the existence of MPL are used in this experiment. Damage on the catalyst layer due to freezing takes place earlier when GDL with MPL is used. More water in the membrane and catalyst layer captured by MPL causes permanent damage on the catalyst layer faster. More detailed information about the degradation is obtained by electrochemical impedance spectroscopy (EIS). From the point of view that MPL reduces the ohmic resistance, it is effective until 40 freezing cycles, but has no more effect thereafter. On the other hand, from the point of view that MPL enhances mass transport, it delays the increase in the mass transport resistance.  相似文献   

12.
In proton exchange membrane fuel cell (PEMFC), a hydrophobic micro-porous layer (MPL) is usually placed between catalyst layer (CL) and gas diffusion layer (GDL) to reduce flooding. Recent experimental studies have demonstrated that liquid water saturation in GDL is drastically decreased in the presence of MPL. However, theoretical studies based on traditional continuum two-phase flow models suggest that MPL has no effect on liquid water distribution in GDL. In the present study, a pore network model with invasion percolation algorithm is developed and used to investigate the impacts of the presence of MPL on liquid water distribution in GDL from the viewpoint at the pore level. A uniform pressure and uniform flux boundary conditions are considered for liquid water entering the porous layer in PEMFC. The simulation results reveal that liquid water saturation in GDL is reduced in the presence of MPL, but the reduction depends on the condition of liquid water entering the porous layer in PEMFC.  相似文献   

13.
This research investigates the optimal polytetrafluoroethylene (PTFE) content in the cathode gas diffusion layer (GDL) by evaluating the effect of compression on the performance of a proton exchange membrane (PEM) fuel cell. A special test fixture is designed to control the compression ratio, and thus the effect of compression on cell performance can be measured in situ. GDLs with and without a microporous layer (MPL) coating are considered. Electrochemical impedance spectroscopy (EIS) is used to diagnose the variations in ohmic resistance, charge transfer resistance and mass transport resistance with compression ratio. The results show that the optimal PTFE content, at which the maximum peak power density occurs, is about 5 wt% with a compression ratio of 30% for a GDL without an MPL coating. For a GDL with an MPL coating, the optimal PTFE content in the MPL is found to be 30% at a compression ratio of 30%.  相似文献   

14.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

15.
A transient multiphase model for cold start process is developed considering micro-porous layer (MPL), super-cooled water freezing mechanism and ice formation in cathode channel. The effect of MPL's hydrophobicity on the output performance and ice/water distribution is investigated under various startup temperatures, structural properties, membrane thicknesses and surrounding heat transfer coefficients. Under the maximum power startup mode, it is found that the hydrophobicity disparity of MPL has negligible influences when started from ?15 °C, but it strongly affects the overall performance when started from ?10 °C, especially after the cell survives the cold start. Decreasing the MPL's hydrophobicity leads to higher current density, meanwhile, it facilitates the super-cooled water's removal, which in turn reduces the ice formation in catalyst layer. However, excessive water accumulation happens if the generated water is hindered from getting into gas diffusion layer (GDL) due to the significant hydrophobicity gap. Weakening the GDL's hydrophobicity contributes to the water removal since the generated water is easier to diffuse out. A thinner membrane benefits the cold start owing to the reduction of ohmic loss and improvement of membrane hydration, and is more sensitive to the hydrophobicity of MPL. Ice formation in cathode channel is identified under various surrounding heat transfer coefficients.  相似文献   

16.
Flooding of the membrane electrode assembly (MEA) and dehydrating of the polymer electrolyte membrane have been the key problems to be solved for polymer electrolyte membrane fuel cells (PEMFCs). So far, almost no papers published have focused on studies of the liquid water flux through differently structured gas diffusion layers (GDLs). For gas diffusion layers including structures of uniform porosity, changes in porosity (GDL with microporous layer (MPL)) and gradient change porosity, using a one-dimensional model, the liquid saturation distribution is analyzed based on the assumption of a fixed liquid water flux through the GDL. And then the liquid water flux through the GDL is calculated based on the assumption of a fixed liquid saturation difference between the interfaces of the catalyst layer/GDL and the GDL/gas channel. Our results show that under steady-state conditions, the liquid water flux through the GDL increases as contact angle and porosity increase and as the GDL thickness decreases. When a MPL is placed between the catalyst layer and the GDL, the liquid saturation is redistributed across the MPL and GDL. This improves the liquid water draining performance. The liquid water flux through the GDL increases as the MPL porosity increases and the MPL thickness decreases. When the total thickness of the GDL and MPL is kept constant and when the MPL is thinned to 3 μm, the liquid water flux increases considerably, i.e. flooding of MEA is difficult. A GDL with a gradient of porosity is more favorable for liquid water discharge from catalyst layer into the gas channel; for the GDLs with the same equivalent porosity, the larger the gradient is, the more easily the liquid water is discharged. Of the computed cases, a GDL with a linear porosity 0.4x + 0.4 is the best.  相似文献   

17.
This work is to study the effect of properties of gas diffusion layer (GDL) on performance in a polymer electrolyte membrane fuel cell (PEMFC) by both numerical simulation and experiments. The 1-dimension numerical simulation using the mixture-phase model is developed to calculate polarization curve. We are able to estimate optimum GDL properties for cell performance from numerical simulation results. Various GDLs which have different properties are prepared to verify accuracy of the simulation results. The contact angle and gas permeability of GDLs are controlled by polytetrafluoroethylene (PTFE) content in micro-porous layers (MPLs). MPL slurry is prepared by homogeneous blending of carbon powder, PTFE suspension, isopropyl alcohol and glycerol. Then the slurry is coated on gas diffusion mediums (GDMs) surface with controlled thickness by blade coating method. Non-woven carbon papers which have different thicknesses of 200 μm and 380 μm are used as GDMs. The prepared GDLs are measured by surface morphology, contact angle, gas permeability and through-plane electrical resistance. Moreover, the GDLs are tested in a 25 cm2 single cell at 70 °C in humidified H2/air condition. The contact angle of GDL increases with increasing PTFE content in MPL. However, the gas permeability and through-plane electrical conductivity decrease with increasing PTFE content and thickness of GDM. These changes in properties of GDL greatly influence the cell performance. As a result, the best performance is obtained by GDL consists of 200 μm thick non-woven carbon paper as GDM and MPL contained 20 wt.% PTFE content.  相似文献   

18.
Water transport through the gas diffusion media of a proton exchange membrane fuel cell (PEMFC) was investigated with a focus on the role of the microporous layer (MPL) coated on the cathode gas diffusion layer (GDL). The capillary pressure of the MPL and GDL, which plays a significant role in water transport, is derived as a function of liquid saturation using a pore size distribution (PSD) model. PSD functions are derived with parameters that are determined by fitting to the measured total PSD data. Computed relations between capillary pressure and liquid saturation for a GDL and a double-layered GDL (GDL + MPL) show good agreement with the experimental data and proposed empirical functions. To investigate the role of the MPL, the relationship between the water withdrawal pressure and liquid saturation are derived for a double-layered GDL. Water transport rates and cell voltages were obtained for various feed gas humidity using a two-dimensional cell model, and are compared with the experimental results. The calculated results for the net drag with application of the capillary pressure derived from the PSD model show good agreement with the experimental values. Furthermore, the results show that the effect of the MPL on the cell output voltage is significant in the range of high humidity operation.  相似文献   

19.
Surface wettability of gas diffusion media (GDM) is one of the key issues related to the water management in fuel cells. In this study, a facile coating approach of combining carbon black and polydimethylsiloxane (PDMS) is developed to fabricate the gas diffusion layer (GDL) with super hydrophobic and hierarchical surfaces. Due to the Wenzel and Cassie's effect, the fabricated GDL shows the average contact angle as high as 158° and the roll angle less than 5°. Its super durability could be identified by the constant potential oxidation with the oxidization peak current approaching to 0.1 mA cm−2, an order of magnitude smaller than that of conventional GDL coated with polytetrafluoroethylene (PTFE) and carbon black (10/90 wt/wt). Furthermore, these hierarchical hydrophobic surfaces exhibit a recovery of hydrophobicity from 107° to 133° by heat treatment. The mechanism of the exceptional self-healing capability is investigated by microscopic and spectroscopic analysis. It is indicated that ring siloxanes with lower surface tension formed on GDL surface during heat treatment process. This paper provides a fundamental research on the hierarchical superhydrophobic surfaces of GDL and a promising solution to develop long-live super hydrophobic GDL.  相似文献   

20.
The effect of hydrophobic agent (PTFE) concentration in the microporous layer on the PEM fuel cell performance was investigated using mercury porosimetry, water permeation experiment, and electrochemical polarization technique. The mercury porosimetry and water permeation experiments indicated that PTFE increases the resistance of the water flow through the GDL due to a decrease of the MPL porosity and an increase of the volume fraction of hydrophobic pores. When air was used as an oxidant, a maximum fuel cell performance was obtained for a PTFE loading of 20 wt.%. The experimental polarization curves were quantitatively analyzed to determine the polarization resistances resulting from different physical and electrochemical processes in the PEM fuel cell. The polarization analysis indicated that the optimized PTFE content results in an effective water management (i.e., a balancing of water saturations in the catalyst layer and the gas diffusion layer), thereby improving the oxygen diffusion kinetics in the membrane-electrode assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号