首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This work is to study the effect of properties of gas diffusion layer (GDL) on performance in a polymer electrolyte membrane fuel cell (PEMFC) by both numerical simulation and experiments. The 1-dimension numerical simulation using the mixture-phase model is developed to calculate polarization curve. We are able to estimate optimum GDL properties for cell performance from numerical simulation results. Various GDLs which have different properties are prepared to verify accuracy of the simulation results. The contact angle and gas permeability of GDLs are controlled by polytetrafluoroethylene (PTFE) content in micro-porous layers (MPLs). MPL slurry is prepared by homogeneous blending of carbon powder, PTFE suspension, isopropyl alcohol and glycerol. Then the slurry is coated on gas diffusion mediums (GDMs) surface with controlled thickness by blade coating method. Non-woven carbon papers which have different thicknesses of 200 μm and 380 μm are used as GDMs. The prepared GDLs are measured by surface morphology, contact angle, gas permeability and through-plane electrical resistance. Moreover, the GDLs are tested in a 25 cm2 single cell at 70 °C in humidified H2/air condition. The contact angle of GDL increases with increasing PTFE content in MPL. However, the gas permeability and through-plane electrical conductivity decrease with increasing PTFE content and thickness of GDM. These changes in properties of GDL greatly influence the cell performance. As a result, the best performance is obtained by GDL consists of 200 μm thick non-woven carbon paper as GDM and MPL contained 20 wt.% PTFE content.  相似文献   

2.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

3.
The dynamic behavior of liquid water transport through the gas diffusion layer (GDL) of the proton exchange membrane fuel cell is studied with an ex-situ approach. The liquid water breakthrough pressure is measured in the region between the capillary fingering and the stable displacement on the drainage phase diagram. The variables studied are GDL thickness, PTFE/Nafion content within the GDL, GDL compression, the inclusion of a micro-porous layer (MPL), and different water flow rates through the GDL. The liquid water breakthrough pressure is observed to increase with GDL thickness, GDL compression, and inclusion of the MPL. Furthermore, it has been observed that applying some amount of PTFE to an untreated GDL increases the breakthrough pressure but increasing the amount of PTFE content within the GDL shows minimal impact on the breakthrough pressure. For instance, the mean breakthrough pressures that have been measured for TGP-060 and for untreated (0 wt.% PTFE), 10 wt.% PTFE, and 27 wt.% PTFE were 3589 Pa, 5108 Pa, and 5284 Pa, respectively.  相似文献   

4.
The gas diffusion layer (GDL) is composed of a substrate and a micro-porous layer (MPL), and is treated with polytetrafluoroethylene (PTFE) to promote water discharge. Additionally, the MPL mainly consists of carbon black and PTFE. In other words, the optimal design of these elements has a dominant effect on the polymer electrolyte membrane fuel cell (PEMFC) performance. For the GDL, it is crucial to prevent water flooding, and the water flux within the GDL is strongly affected by the capillary pressure gradient. In this study, the PEMFC performance was systematically investigated by varying the substrate PTFE content, MPL PTFE content, and MPL carbon loading per unit area. The effects of each experimental variable on the PEMFC performance and especially on the capillary pressure gradient were quantitatively analyzed when the GDLs were manufactured by the doctor blade manufacturing method. The experimental results indicated that as the PTFE content of the anode and cathode GDL increased, the PEMFC performance deteriorated due to the deformation of the porosity and tortuosity of the GDL. Additionally, the PEMFC performance improved as the MPL PTFE content of the cathode GDL increased at low relative humidity (RH), but the PEMFC performance tendency was reversed at high RH. Further, the MPL carbon loading of 2 mg/cm2 demonstrated the best performance, and the advantages and disadvantages of the MPL carbon loading were identified. In addition, the effects of each experimental variable on liquid water, water vapor, and gas permeability were investigated.  相似文献   

5.
The optimal design of the cathode gas diffusion layer (GDL) for direct methanol fuel cells (DMFCs) is not only to attain better cell performance, but also to achieve better water management for the DMFC system. In this work, the effects of both the PTFE loading in the cathode backing layer (BL) as well as in the micro-porous layer (MPL) and the carbon loading in the MPL on both water transport and cell performance were investigated experimentally. The experimental data showed that with the presence of a hydrophobic MPL in the GDL, the water-crossover flux through the membrane decreased slightly with increasing the PTFE loading in the BL. However, a higher PTFE loading in the BL not only lowered cell performance, but also resulted in an unstable discharging process. It was also found that the PTFE loading in the MPL had little effect on the water-crossover flux, but its effect on cell performance was substantial: the 40-wt% PTFE loading in the MPL was found to be the optimal value to achieve the best performance. The experimental results further showed that increasing the carbon loading in the MPL significantly lowered the water-crossover flux, but a too high carbon loading would decrease the cell performance as the result of the increased oxygen transport resistance; the 2.0-mg C cm−2 carbon loading was found to exhibit the best performance.  相似文献   

6.
The effects of polytetraflouroethylene (PTFE) content in the gas diffusion layer (GDL) on the performance of PEMFCs with stainless-steel bipolar plates are studied under various operation conditions, including relative humidity, cell temperature, and gas pressure. The optimal PTFE content in the GDL strongly depends on the cell temperature and gas pressure. Under unpressurized conditions, the best cell performance was obtained by the GDL without PTFE, at a cell temperature of 65 °C and relative humidity (RH) of 100%. However, under the conditions of high cell temperature (80 °C), low RH (25%) and no applied gas pressure, which is more desirable for fuel cell vehicle (FCV) applications, the GDL with 30 wt.% PTFE shows the best performance. The GDL with 30 wt.% PTFE impedes the removal of produced water and increases the actual humidity within the membrane electrode assembly (MEA). A gas pressure of 1 bar in the cell using the GDL with 30 wt.% PTFE greatly improves the performance, especially at low RH, resulting in performance that exceeds that of the cell under no gas pressure and high RH of 100%.  相似文献   

7.
This work investigates the degradation of an individual gas diffusion layer (GDL) by repeated freezing cycles. The pore size distribution, gas permeability, surface structure, and contact angle on the surface of the GDL were measured in four different types of GDL: SGL paper with a microporous layer (MPL); SGL paper with 5 wt% of polytetrafluoroethylene (PTFE) loading; Toray paper without PTFE loading; and Toray paper with 20 wt% of PTFE loading. After repeated freezing cycles, the porosity of the GDL without PTFE was reduced by 27.2% due to the volumetric expansion of the GDL. The peak of the log differential intrusion moved toward a smaller pore diameter slightly because of the repeated freezing process. The crack of the MPL increased in its width and length after repeated freezing cycles. The through-plane gas permeability of the GDL with the MPL doubled after repeated freezing cycles due to the growth of the crack in the MPL, but was very small for the GDLs with Toray paper. Besides, the GDLs with PTFE loading showed a relatively larger decrease in the contact angle on the surface than the GDL without PTFE loading due to the separation of PTFE from the carbon fiber during the repeated freezing process.  相似文献   

8.
The effects of the parameters of the anode gas diffusion layer (GDL), including the PTFE content in the backing layer (BL), the PTFE content in the microporous layer (MPL), and the carbon black loading on the performance of a liquid‐feed direct dimethyl ether fuel cell (DDFC), were experimentally investigated. The results indicated that increase in the PTFE content can produce more cracks across the whole surface of the MPL. These cracks were benefit to the anode two‐phase mass transport. The optimal PTFE content in anode BL and MPL was 18 and 40 wt%, respectively. The performances of the DDFCs tended to decline with the increase in the carbon black loading in the anode GDLs due to the difficult long path of mass transport. The maximum power density was obtained with 18 wt% PTFE in BL and 0 mg cm?2 carbon black loading, the optimal result, was 76.6 mW cm?2 at ambient pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The freezing characteristics of supercooled water in a gas diffusion layer (GDL), which are the bases for the cold start-up of proton exchange membrane fuel cells (PEMFCs), were investigated. An experimental apparatus for noncontact temperature measurement and observation systems was developed. GDL and GDL with a microporous layer (MPL) were prepared, and freezing experiments using a water-containing GDL under various cooling rates were performed with variations in polytetrafluoroethylene (PTFE) content and water saturation. Furthermore, based on the experimental results, the freezing initiation probability was theoretically investigated to elucidate the freezing characteristics. Results showed that, with increasing supercooling of water in GDL, the freezing probability of water increased abruptly. The effect of saturation showed a different trend depending on PTFE addition. For the GDL without PTFE, the freezing initiations occurred at approximately 6 °C of supercooling degree, and the probability approached 1.0 at approximately 9.5–11.5 °C, with saturation dependency. In contrast, for both GDL and GDL + MPL containing PTFE, the initiation temperature characteristics were relatively similar, which were approximately 8–12 °C, regardless of the saturation and PTFE content. In these cases, the ice-nucleating activity of water in the GDL was possibly stronger than that in the MPL.  相似文献   

10.
The effect of hydrophobic agent (PTFE) concentration in the microporous layer on the PEM fuel cell performance was investigated using mercury porosimetry, water permeation experiment, and electrochemical polarization technique. The mercury porosimetry and water permeation experiments indicated that PTFE increases the resistance of the water flow through the GDL due to a decrease of the MPL porosity and an increase of the volume fraction of hydrophobic pores. When air was used as an oxidant, a maximum fuel cell performance was obtained for a PTFE loading of 20 wt.%. The experimental polarization curves were quantitatively analyzed to determine the polarization resistances resulting from different physical and electrochemical processes in the PEM fuel cell. The polarization analysis indicated that the optimized PTFE content results in an effective water management (i.e., a balancing of water saturations in the catalyst layer and the gas diffusion layer), thereby improving the oxygen diffusion kinetics in the membrane-electrode assembly.  相似文献   

11.
The primary removal of product water in proton exchange membrane (PEM) fuel cells is through the cathode gas diffusion layer (GDL) which necessitates the understanding of vapor and liquid transport of water through porous media. In this investigation, the effect of microporous layer (MPL) coatings, GDL thickness, and polytetrafluorethylene (PTFE) loading on the effective water vapor diffusion coefficient is studied. MRC Grafil, SGL Sigracet, and Toray TGP-H GDL samples are tested experimentally with and without MPL coatings and varying PTFE loadings. A dynamic diffusion test cell is developed to produce a water vapor concentration gradient across the GDL and induce diffusion mass transfer. Tests are conducted at ambient temperature and flow rates of 500, 625, and 750 sccm. MPL coatings and increasing levels of PTFE content introduce significant resistance to diffusion while thickness has negligible effects.  相似文献   

12.
A gas diffusion layer (GDL) facilitates the diffusion of reactant gas and the discharge of the generated water. The GDL performs various functions, such as conducting heat and electrons generated by electrochemical reactions and providing mechanical support for the catalyst layer. In this study, the effects of ratio variation in the substrate and microporous layer (MPL) penetration region on the proton exchange membrane fuel cell (PEMFC) performance were investigated. Furthermore, the reasons for these performance tendencies are explained based on the thermogravimetric analysis, contact angle, scanning electron microscopy, mercury porosimetry, electrical resistance, electrochemical impedance spectroscopy, and capillary pressure gradient. The experimental results indicate that the MPL penetration ratio within 15–20% of the total GDL thickness and the combined ratio of the MPL and MPL penetration within 35–40% is the best for the overall PEMFC performance. In addition, when the substrate ratio is excessively low, water flooding substantially occurs in the substrate, and this accumulated water functions as a back pressure, causing severe capillary condensation in the MPL penetration region and thus depriving the supply of the reactant gas.  相似文献   

13.
Water management in a proton exchange membrane (PEM) fuel cell is one of the critical issues for improving fuel cell performance and durability, and water transport across the gas diffusion layer plays a key role in PEM fuel cell water management. In this work, we investigated the effects of polytetrafluoroethylene (PTFE) content and the application of a micro-porous layer (MPL) in the gas diffusion layer (GDL) on the water transport rate across the GDL. The results show that both PTFE and the MPL play a similar role of restraining water transport. The effects of different carbon loadings in the MPL on water transport were also investigated. The results demonstrate that the higher the carbon loading in the MPL, the more it reduces the water transport rate. Using the given cell hardware and components, the optimized operation conditions can be obtained based on a water balance analysis.  相似文献   

14.
In this study, Nafion ionomer, as a kind of hyperdispersant, was added to polytetrafluoroethylene (PTFE) water dispersion system to suppress the size of PTFE particles in the ink of microporous layer (MPL). The agglomeration behavior of PTFE in ethanol and MPL were investigated by laser diffraction, dynamic light scattering (DLS) and metallurgical microscopes. The electronic resistance, pore size distribution, gas permeability and surface hydrophobic/hydrophilic properties were also characterized for prepared gas diffusion layers (GDLs). It was shown that PTFE water dispersion system suffered flocculating when dispersed in ethanol and this agglomeration behavior was reduced by employing Nafion ionomer. With the increase in the Nafion ionomer adopted in the MPL, not only the decreased hydrophobic property was shown in the MPL, but the decreased PTFE particle size was also achieved, which results in improved crosslink of carbon and pores themselves as well as the volume loss of pores in micron scale. The increased gas permeability and electronic conductivity of the GDL made the one employing the PTFE dispersion system with 1% Nafion content own its advantages as the cathode diffusion layer for a direct methanol fuel cell (DMFC) under near-ambient conditions.  相似文献   

15.
The purpose of this study is to investigate the effect of ploytetrafluoroethylene (PTFE)-treatment and microporous layer (MPL)-coating on the electrical conductivity of gas diffusion layers (GDLs), as used in proton exchange membrane fuel cells (PEMFCs). The results show that, for PTFE-treated GDLs, the electrical conductivity in orthogonal in-plane directions is almost invariant with the PTFE loading. On the other hand, the in-plane conductivity of the MPL-coated GDL SGL 10BE (50% PTFE) was found to be higher than that of the counterpart SGL 10BC (25% PTFE) and this was explained by the presence of more conductive carbon particles in the MPL of SGL 10BE. Further, the conductivity of each GDL sample was measured in two perpendicular in-plane directions in order to investigate the in-plane anisotropy. The results show that the electrical conductivity of the GDL sample in one direction is different to that in the other direction by a factor of about two. The contact resistance, the main factor affecting the through-plane conductivity, of PTFE-treated GDLs shows a different trend to the corresponding in-plane conductivity, namely it increases as the PTFE loading increases. On the other hand, the contact resistance of the MPL-coated GDL SGL 10BE (50% PTFE) was found to be lower than that of the counterpart SGL 10BC (25% PTFE) and again this was explained by the presence of more conductive carbon particles in the MPL of SGL 10BE. Also, it was noted that the MPL coating appears to have a positive effect in reducing the contact resistance between the GDL and the bipolar plate. This is most likely due to the compressibility of the MPL layers that allows them to fill in the ‘gaps’ that exist in the surface of the bipolar plates and therefore establishes a good contact between the latter plates and the GDLs. Finally, good curve fitting of the contact resistance as a function of the clamping pressure has been achieved.  相似文献   

16.
Anode water removal (AWR) is studied as a diagnostic tool to assess cathode gas diffusion layer (GDL) flooding in PEM fuel cells. This method uses a dry hydrogen stream to remove product water from the cathode, showing ideal fuel cell performance in the absence of GDL mass transfer limitations related to water. When cathode GDL flooding is limiting, the cell voltage increases as the hydrogen stoichiometry is increased. Several cathode GDLs were studied to determine the effect of microporous layer (MPL) and PTFE coating. The largest voltage gains occur with the use of cathode GDLs without an MPL since these GDLs are prone to higher liquid water saturation. Multiple GDLs are studied on the cathode side to exacerbate GDL flooding conditions to further confirm the mechanism of the AWR process. Increased temperature and lower cathode RH allow for greater overall water removal so the voltage improvement occurs faster, though this leads to quicker membrane dehydration.  相似文献   

17.
A new method of preparing microporous layer (MPL) for proton exchange membrane fuel cell (PEMFC) was presented in this paper. Considering the bad dispersion of PTFE aqueous suspension in the carbon slurry based on ethanol, polyvinylpyrrolidone (PVP) aqueous solution was used to prepare carbon slurry for microporous layer. The prepared gas diffusion layers (GDLs) were characterized by scanning electron microscopy, contact angle system and pore size distribution analyzer. It was found that the GDL prepared with PVP aqueous solution had higher gas permeability, as well as more homogeneous hydrophobicity. Moreover, the prepared GDLs were used in the cathode of fuel cell and evaluated with fuel cell performance and EIS analysis, and the GDL prepared with PVP aqueous solution indicated better fuel cell performance and lower ohmic resistance and mass transfer resistance.  相似文献   

18.
In this study, a gas diffusion layer (GDL) was modified to improve the water management ability of a proton exchange membrane fuel cell (PEMFC). We developed a novel hydrophobic/hydrophilic double micro porous layer (MPL) that was coated on a gas diffusion backing layer (GDBL). The water management properties, vapor and water permeability, of the GDL were measured and the performance of single cells was evaluated under two different humidification conditions, R.H. 100% and 50%. The modified GDL, which contained a hydrophilic MPL in the middle of the GDL and a hydrophobic MPL on the surface, performed better than the conventional GDL, which contained only a single hydrophobic MPL, regardless of humidity, where the performance of the single cell was significantly improved under the low humidification condition. The hydrophilic MPL, which was in the middle of the modified GDL, was shown to act as an internal humidifier due to its water absorption ability as assessed by measuring the vapor and water permeability of this layer.  相似文献   

19.
The gas diffusion layer (GDL) covered with a microporous layer (MPL) is being widely used in proton exchange membrane fuel cells (PEMFCs). However, the effect of MPL on water transport is not so clear as yet; hence, many studies are still being carried out. In this study, the effect of MPL on the performance degradation of PEMFCs is investigated in repetitive freezing conditions. Two kinds of GDL differentiated by the existence of MPL are used in this experiment. Damage on the catalyst layer due to freezing takes place earlier when GDL with MPL is used. More water in the membrane and catalyst layer captured by MPL causes permanent damage on the catalyst layer faster. More detailed information about the degradation is obtained by electrochemical impedance spectroscopy (EIS). From the point of view that MPL reduces the ohmic resistance, it is effective until 40 freezing cycles, but has no more effect thereafter. On the other hand, from the point of view that MPL enhances mass transport, it delays the increase in the mass transport resistance.  相似文献   

20.
This study applied the pseudo-potential Lattice Boltzmann method (LBM) for investigating liquid water transport in the microporous layer (MPL) and gas diffusion layer (GDL) of polymer electrolyte fuel cell. The MPL and GDL reconstruction is performed by using a stochastic method. Unlike previous studies that examined the GDL as two distinct layers of hydrophilic and hydrophobic, this study considered the wettability heterogeneity. In the present study, some of the carbon fibers in the GDL are randomly considered hydrophilic. Moreover, liquid water transport in the compressed and uncompressed GDL with different hydrophilic fibers percentage are compared. The effect of hydrophilic fibers percentage and the compression ratio of the GDL on the liquid water saturation level, the steady-state time, and the formation and growth of droplets in the gas channel (GC) are investigated. The results indicated that more than 10% of hydrophilicity of the fibers lead to the formation of discontinuous water clusters. This phenomenon increased the steady-state time and water saturation level significantly. The simulation showed that compression increased the number of discontinuous water clusters in the GDL. The obtained results demonstrated that the hydrophilic fibers may have positive or negative effects on water transport in the GDL due to their location. In addition, this study indicated that for 10% of hydrophilic fibers with 10% compression, water saturation level and time required to reach steady-state decreased by 5.2% and 22% respectively compared to purely hydrophobic GDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号