首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 359 毫秒
1.
兰州重离子冷却储存环工程   总被引:22,自引:6,他引:16  
兰州重离子加速器冷却储存环是兰州重离子研究装置的后续工程 .它的建造目的是将重离子束的能量提高到 1 Ge V/u附近 ,同时利用储存环电子冷却技术将束流品质提高一个数量级 ,并提供更多种类的重离子束 ,以开展更广范围和更高精度的物理实验 .兰州重离子加速器冷却储存环是一个双储存环系统 ,由一个主环和一个实验环构成 .对其总体布局、总体参数、主要功能进行了介绍. HIRFL- CSR, a new accelerator project at the Heavy Ion Research Facility in Lanzhou (HIRFL), is a multipurpose Cooling Storage Ring system which consists of a main ring (CSRm) and an experimental ring (CSRe). Beams from HIRFL will be accumulated and accelerated in CSRm, and then transported to CSRe for internal target experiments. The layout, major parameters and main functions of the CSR were described.  相似文献   

2.
A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring(CSRm) at the Heavy Ion Research Facility in Lanzhou(HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron(SFC), the beam current from linac can be improved by 10–100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole(RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane.The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs(KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs(DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency,RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.  相似文献   

3.
阐述了北京大学整体分离环高频四极场(ISRRFQ)加速器研究所取得的研究成果.分别论述了26MHz300keVISRRFQ加速器结构、束流动力学设计、高频控制系统、束流试验装置及束流试验;分析了其对N+、O+、O-束流试验的研究结果;简述了26MHz1MeVRFQ加速器束流动力学、加速腔设计及目前的进展 The status of the ISR RFQ accelerators in Peking University is described. The structure of ISR RFQ accelerator, beam dynamics calculation results by PARMTEQ, RF systems, beam transport lines and the beam test evolutions of a 26 MHz 300 keV ISR RFQ accelerator are also presented, respectively. The beam test results for N +, O +, O - particles are analyzed in detail. At last, the development of 1 MeV 26 MHz ISR RFQ accelerator is introduced briefly.  相似文献   

4.
RF system design and measurement of HIRF-CSRe   总被引:1,自引:0,他引:1  
An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.  相似文献   

5.
在HIRFL-CSRm上进行高能量密度物理和等离子体物理的研究需要一个能提供高电压的高频腔来对束团进行纵向压缩, 而磁合金加载腔获得较高的加速场梯度可以满足这一要求, 且腔体不需要调谐, 从而简化了高频控制系统。为了选择磁导率和阻抗较大、Q值(品质因数)小于1的磁合金材料来加载压缩高频腔, 对型号为V和A的两种磁合金材料进行了测试。测试结果表明: 型号为V的材料具有较大的磁导率、 阻抗和小于1的Q值, 将被用来加载腔体以获得足够高的加速电场梯度。A high voltage RF cavity is required to compress the beam bunch in the longitudinal for high energy density physics and plasma physics research at HIRFL CSRm. A magnetic alloy (MA) loaded cavity which has high acceleration gradient and without tuning loop (can simplify the RF control system), can meet the requirement. In order to select a proper MA material with higher permeability and shunt impe dance, Q< 1 value to load the RF compression cavity, two different MA materials V and A have been tes ted. The results indicate that the material V will be better for the construction of the RF cavity than material A because of its higher permeability and shunt impedance, Q< 1 value.  相似文献   

6.
The BEPCII storage ring adopts two 500 MHz superconducting cavities (SCC). Each one is equipped with a 500 MHz input power coupler. The coupler is to feed 150 kW power in continuous wave (CW) mode with both standing and traveling wave modes. Due to high power feeding and high frequency of the coupler, its fabrication is a big challenge. The fabrication started with two key components,the window and the antenna. Up to now, two sets including windows and antennas have been made by IHEP. And a 270 kW RF power in CW has passed through the coupler during the high power test. The fabrication details are presented in this paper.  相似文献   

7.
Digital prototype of LLRF system for SSRF   总被引:2,自引:0,他引:2  
This paper describes a field programming gate array (FPGA) based low level radio frequency (LLRF) prototype for the SSRF storage ring RF system. This prototype includes the local oscillator (LO), analog front end, digital front end, RF out, clock distributing, digital signal processing and communication functions. All feedback algorithms are performed in FPGA. The long term of the test prototype with high power shows that the variations of the RF amplitude and the phase in the accelerating cavity are less than 1% and 1° respectively, and the variation of the cavity resonance frequency is controlled within ±10 Hz.  相似文献   

8.
SSC-LINAC是为兰州重离子研究装置(HIRFL)设计的直线注入器,它将U34+离子加速到1 MeV/u注入到分离扇回旋加速器(SSC)中,为冷却储存环(CSR)提供10 MeV/u的U34+。该注入器可以将SSC引出的重离子流强提高一个量级以上。SSC-LINAC由一个RFQ(Radio Frequency Quadrupole)加速器和4个DTL(drift tube linac)组成,设计频率为53.667 MHz。RFQ工作在连续波模式,设计功率30 kW,如果不能有效地冷却,高频电流在电极表面产生的热量会使RFQ的腔壁和电极发生形变,从而导致腔体频率的漂移以及加速和聚焦电场的改变。因此,为了保证连续波工作的RFQ加速器稳定运行,对水冷模式和通道设计提出了很高的要求。作者用有限元软件ANSYS对RFQ进行高频电磁场、温度场、结构应力的耦合分析,验证了冷却方案设计的可行性和可靠性。Heavy Ion Research Facility at Lanzhou(HIRFL) consists of SFC, SSC, CSRm and CSRe. A new linac injector, which will increase U34+ to 1 MeV/u, is designed for SSC to increase the beam intensity to ten times higher. The new injector, whose frequency is 53.667 MHz, is composed by a RFQ (Radio Frequency Quadrupole) cavity and four DTL(Drift Tube Linac) cavities. The RFQ cavity, whose RF power is 30 kW, is operated at CW(continuous wave) mode. The heat produced by HF (high frequency) electromagnetic will cause deformation of RFQ structure, lead to the resonant frequency shift, and reduce the focusing efficiency of the cavity. An efficient cooling system is necessary to ensure that the RFQ cavity can stably be operated at the nominal frequency. A detailed multi-physics field coupling analysis of RFQ has been finished with 3D finite elements software ANSYS. The result of the analysis shows that the water cooling system can cool the RFQ cavity fully and keep the frequency drift be in a acceptable level.  相似文献   

9.
10.
针对兰州重离子加速器冷却储存环的发展目标,为了满足高能量密度(涉及重离子驱动惯性约束核聚变新能源)等物理研究的需要, 使用三维电磁场计算程序MAFIA研究了一种新型的适用于CSR的纵向束团压缩腔。 此纵向束团压缩腔采用高磁导率软磁合金材料进行加载,相比于铁氧体加载的高频腔, 可以得到高的电场梯度。以250 MeV/u的238U72+离子为例进行了模拟计算, 得出了此纵向束团压缩腔的工作频率为1.15 MHz, 峰值工作电压为80 kV, 由两个1/4波长同轴谐振腔组成, 每个谐振腔峰值工作电压为40 kV,能够满足在CSR上进行纵向束团压缩的要求。 The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring(CSR) is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch, which can be produced by non adiabatic compression of bunch implemented by a fast compression with 90° rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET FT 1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238U72+ with 250 MeV/u will be compressed from 200 ns to 50 ns. The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80kV, and the cavity can be used to compress heavy ions in the CSR.  相似文献   

11.
 在研究兰州重离子冷却储存环(HIRFL-CSR)纵向相振荡运动特性的基础上,对主环(CSRm)内重离子的加速过程进行了模拟研究。选取由扇聚焦回旋加速器(SFC)剥离注入的能量为7 MeV/u,动量散度为±0.5%的12C6+典型离子,模拟了CSRm内束流的加速过程,加速的最终能量为1 GeV/u。在加速过程中采用了变换谐波的方式,解决了较低能量下的加速问题。模拟结果给出了不同时刻粒子在纵向相空间的分布以及各主要高频参数随时间的变化曲线。  相似文献   

12.
兰州重离子加速器冷却储存环   总被引:9,自引:5,他引:4  
 兰州重离子加速器冷却储存环HIRFL-CSR,是一个多用途、多功能的双冷却储存环同步加速器系统,由主环CSRm和实验环CSRe构成,并以兰州重离子级联回旋加速器HIRFL作注入器。CSR利用高频变谐波的方法,将重离子束的能量从7~25 MeV/u同步加速到200~1 000 MeV/u,同时利用重离子储存环中空心电子束冷却技术将束流品质提高1个数量级,并通过储存环的快引出及慢引出,提供多种类的重离子束以及放射性次级束(RIBs),以开展范围更广精度更高的物理实验。该装置于2007年投入运行,已取得了重要的运行结果,如实现了剥离注入与多圈注入、空心电子束对重离子束的冷却与累积、变谐波宽能区同步加速、等时性环型谱仪、RIBs的产生收集与ToF高分辨质量测量以及高能重离子束的变能慢引出等。  相似文献   

13.
根据实际情况对兰州重离子加速器冷却储存环主环随机冷却做了初步设计和优化, 用冷却方程对主环随机冷却做了详细的数值模拟计算. 研究表明, 随机冷却对主环束流冷却速度很快, 冷却效果很好. 通过对电子冷却和随机冷却的比较, 提出主环的束流冷却采用电子冷却和随机冷却相结合的办法, 这样可以加快冷却速度, 得到更高流强、更好品质的束流.  相似文献   

14.
In cyclic accelerators, interaction of the beam with the RF accelerating system may generate inphase dipole oscillations of bunches, which govern the limiting current of charged particles in the accelerator. A method of calculating the influence of the parameters of the RF system on the limit current is suggested. It is shown that feedbacks stabilizing the performance of the RF system considerably influence the limiting current in the accelerator. Moreover, the length of feeders through which the power of RF generators is applied to accelerating resonators also has an effect on the limiting current. The efficiency of the method is demonstrated by calculating the limiting electron current in a Sibir’-2 storage ring installed at the Russian Research Centre Kurchatov Institute.  相似文献   

15.
Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.  相似文献   

16.
This paper describes a field programming gate array(FPGA)based low level radio frequency (LLRF)prototype for the SSRF storage ring RF system.This prototype includes the local oscillator(LO),analog front end,digital front end,RF out,clock distributing,digital signal processing and communication functions.All feedback algorithms are performed in FPGA.The long term of the test prototype with high power shows that the variations of the RF amplitude and the phase in the accelerating cavity are less than 1%and 1°respectively.and the variation of the cavity resonance frequency is controlled within ±10 Hz.  相似文献   

17.
This paper presents the RF system of VEPP-5 damping ring created at BINP Novosibirsk. The RF system operates at 700 MHz and consists of a generator based on KU-393 klystron, a transmitting waveguide with wave-to-coax adapters, an accelerating cavity, and a control system. Cavity HOMs are damped with resistive loads to eliminate the beam instability. Parameter results of cold measurement tests and high-power level tests are presented.  相似文献   

18.
CSRm闭轨畸变及其校正的模拟研究   总被引:1,自引:0,他引:1  
在给定的磁铁安装误差和磁场加工误差的条件下,对兰州重离子加速器冷却储存环主环的闭轨畸变及其校正进行了计算机模拟研究,在典型的误差分布下,校正前的水平方向及垂直方向的最大闭轨畸变分别为3.08mm和2.73mm,校正模拟的结果显示CSRm的闭轨畸变可以控制在足够小的范围内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号