首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
行星齿轮箱由于行星轮通过效应、太阳轮与行星架的旋转及时变工况,导致其振动响应存在时变传递路径及非平稳性等特点,且传统的同步平均将不能直接应用于行星齿轮箱。笔者在国外加窗同步平均的基础上提出一种能有效克服时变传递路径及非平稳性的基于包络信号角域加窗同步平均的行星齿轮箱故障特征提取方法。首先,基于谱峭度提取出行星齿轮箱振动信号的包络信号;其次,再利用计算阶比跟踪技术对包络信号进行等角度重采样,行星架每旋转一圈,选择合适的窗函数对角域信号进行多齿宽加窗截取;最后,验证齿轮啮合齿序特征,根据重排齿序对加窗信号进行重构振动分离信号,对振动分离信号进行角域同步平均,提取行星齿轮箱故障特征。行星齿轮箱故障实测信号分析表明,该方法能有效提取行星齿轮箱故障特征。  相似文献   

2.
针对行星齿轮箱中各部件所激起的振动成分混叠、早期故障特征经常被较强的各级齿轮谐波成分以及环境噪声所湮没的问题,提出一种多共振分量融合卷积神经网络(multi-resonance component fusion based convolutional neural network,简称MRCF-CNN)的行星齿轮箱故障诊断方法。首先,对振动信号进行共振稀疏分解,得到包含齿轮谐波成分的高共振分量和可能包含轴承故障冲击成分的低共振分量;其次,构建多共振分量融合卷积神经网络,将得到的高、低共振分量和原始振动信号进行自适应的特征级融合,通过有监督的方式训练模型并进行行星齿轮箱故障诊断。对行星齿轮箱实验数据的分析结果表明,该方法能够有效分类行星齿轮箱中滚动轴承和齿轮的故障,成功对行星齿轮箱故障进行诊断,同时能够进一步增强卷积神经网络对振动信号所蕴含的故障信息的辨识能力。  相似文献   

3.
在故障诊断领域,电机电流信号分析法(MCSA)已经逐渐应用于齿轮故障诊断中,但该方法在诊断行星轮缺齿故障时由于电流基频干扰较大,导致故障特征不明显,难以实现故障诊断。因此提出一种基于电流信号经验模态分解(EMD)的故障诊断方法。通过对电机电流信号进行EMD分解,选取合适的IMF分量经傅立叶变换求其频谱图,根据频谱图中是否存在与故障特征频率相关的频率,实现了对行星轮缺齿故障的有效诊断。并通过实验分析,验证了该方法的有效性。  相似文献   

4.
针对行星齿轮箱故障诊断的需求,以及内齿圈齿根应变难以准确测量的工程实际问题,提出了一种光纤光栅(fiber Bragg grating,简称FBG)动态测量内齿圈齿根应变的方法。首先,通过理论分析,仿真计算得到了内齿圈齿根应变的分布曲线以及变化曲线;其次,研究了光纤光栅在非均匀应变场作用下的传感原理,从测点布置以及测量系统构建等角度分析了所提出的测量方法;最后,在行星齿轮箱实验台上开展了内齿圈齿根应变的测量实验。实验与仿真结果对比分析表明,利用所提出的测量方法获取的内齿圈齿根应变信号表现出明显的单、双齿交替啮合区间,且每个区间的范围以及各区间下齿根应变的大小与理论计算结果具有较好的一致性。与传统方法相比,该方法更加适用于行星齿轮箱内狭小空间下齿根应变的在线测量任务。  相似文献   

5.
提出了一种基于最小熵解卷积和变分模态分解以及模糊近似熵的故障特征提取方法,并采用优化支持向量机对故障进行识别分类。首先利用最小熵解卷积方法降低噪声干扰并增强故障信号中故障特征信息,进而对降噪后的信号进行变分模态分解,并利用模糊近似熵量化变分模态分解后包含故障特征信息的模态分量以构建特征向量,之后通过采用扩展粒子群算法优化惩罚因子和核函数参数的支持向量机,对故障样本训练并完成故障识别分类。将所提方法应用于滚动轴承不同损伤程度、不同故障部位的实验数据,验证了该方法的有效性。与基于局部均值分解的特征提取方法相对比,结果表明所提方法可以更精确地提取出滚动轴承故障特征,并能够更准确地完成不同故障的识别;通过与基于网格寻优算法优化的支持向量机方法和基于扩展粒子群优化的最小二乘支持向量机方法相对比,结果表明所提方法具有更好的分类性能,能达到更好的诊断效果。  相似文献   

6.
基于VMD的故障特征信号提取方法   总被引:2,自引:0,他引:2  
变模式分解(variational mode decomposition,简称VMD)能够将多分量信号一次性分解成多个单分量调幅调频信号(variational intrinsic mode function,简称VIMF),但对噪声比较敏感。利用VMD对噪声的敏感特性,提出了一种基于VMD的降噪方法。利用排列熵定量确定VMD分解后各分量的含噪程度,对高噪分量直接剔除,对低噪分量进行Savitzky-Golay平滑处理,然后重构信号。运用该方法降噪后,对重构信号进行变模式分解,能够有效提取故障特征信号。仿真和实例分析表明,基于VMD的降噪方法的降噪效果优于小波变换降噪方法,VMD能有效提取故障特征信号。  相似文献   

7.
行星齿轮箱的运行状态对直升机飞行安全非常重要。行星齿轮箱常工作在恶劣的条件下,容易出现磨损或疲劳裂纹等故障。为实现基于扭振信号的行星齿轮传动故障诊断,采用基于增量式编码器的扭振信号测量方法,分别测量了输入轴和输出轴的扭振信号,并分析对比了信号对齿轮故障的敏感性,结果表明,输入轴信号较输出轴信号能更准确地诊断故障。分析比较了负载对信号的影响,认为在重载情况下输出轴扭振信号比输入轴扭振信号对故障特征更加敏感。  相似文献   

8.
Because planetary gear is characterized by its small size, light weight and large transmission ratio, it is widely used in large-scale, low-speed and heavy-duty mechanical systems. Therefore, the fault diagnosis of planetary gear is a key to ensure the safe and reliable operation of such mechanical equipment. A fault diagnosis method of planetary gear based on the entropy feature fusion of ensemble empirical mode decomposition (EEMD) is proposed. The intrinsic mode functions (IMFs) with small modal aliasing are obtained by EEMD, and the original feature set is composed of various entropy features of each IMF. To address the insensitive features in the original feature set and the excessive feature dimension, kernel principal component analysis (KPCA) is used to process the original feature set. Kernel principal component extraction and feature dimension reduction are performed. The fault diagnosis of planetary gear is eventually realized by applying the extracted kernel principal components and learning vector quantization (LVQ) neural network. The experiments under different operation conditions are carried out, and the experimental results indicate that the proposed method is capable of extracting the sensitive features and recognizing the fault statuses. The overall recognition rate reaches to 96% when the motor output frequency is 45 Hz and the load is 13.5 N m, and the fault recognition rates of the normal gear, the gear with one missing tooth and the broken gear can reach to 100%. The recognition rates of different fault gears under other operation conditions also can achieve better results. Thus, the proposed method is effective for the diagnosis of planetary gear faults.  相似文献   

9.
During the condition monitoring of a planetary gearbox, features are extracted from raw data for a fault diagnosis.However, different features have different sensitivity for identifying different fault types, and thus, the selection of a sensitive feature subset from an entire feature set and retaining as much of the class discriminatory information as possible has a directly effect on the accuracy of the classification results. In this paper, an improved hybrid feature selection technique(IHFST) that combines a distance evaluation technique(DET), Pearson's correlation analysis, and an ad hoc technique is proposed. In IHFST, a temporary feature subset without irrelevant features is first selected according to the distance evaluation criterion of DET, and the Pearson's correlation analysis and ad hoc technique are then employed to find and remove redundant features in the temporary feature subset, respectively, and hence,a sensitive feature subset without irrelevant or redundant features is selected from the entire feature set. Further, the k-means clustering method is applied to classify the different kinds of health conditions. The effectiveness of the proposed method was validated through several experiments carried out on a planetary gearbox with incipient cracks seeded in the tooth root of the sun gear, planet gear, and ring gear. The results show that the proposed method can successfully distinguish the different health conditions of a planetary gearbox, and achieves a better classification performance than other methods. This study proposes a sensitive feature subset selection method that achieves an obvious improvement in terms of the accuracy of the fault classification.  相似文献   

10.
针对行星齿轮箱诊断过程复杂和诊断结果准确率低的问题,提出了一种基于流向图的行星齿轮箱故障诊断方法。该方法通过流向图构建算法直观地表示行星齿轮箱的故障诊断知识,利用流向图约简算法删除不必要的征兆属性节点,以简洁的形式表示属性之间的因果关系,利用流向图分类决策算法确定待诊实例的故障类型。仿真和实验结果证明了该方法的准确性和直观性,为行星齿轮箱的故障诊断提供了一种新颖的解决思路。  相似文献   

11.
行星齿轮箱故障诊断技术的研究进展   总被引:22,自引:1,他引:22  
行星齿轮箱广泛用于风力发电、直升机、工程机械等大型复杂机械装备中,低速重载的恶劣工作环境经常导致其太阳轮、行星轮、行星架等关键部件出现严重磨损或疲劳裂纹等故障。然而,现有的中心轴固定的传统齿轮箱故障诊断理论与技术不能有效解决行星齿轮箱诊断中所面临的诸多棘手问题,例如行星齿轮箱中多模式混淆和振动传输路径复杂导致故障响应微弱、载荷大范围瞬时波动引起振动的强烈非平稳性、多对齿轮啮合的振动相互耦合造成振动明显的非线性、低频特征频率成分噪声污染严重等。阐述行星齿轮箱故障诊断的特点与难点;从动力学建模和动态信号处理两方面,综述和分析行星齿轮箱故障诊断的国内外研究进展;指出当前研究中存在的关键问题;讨论解决这些关键问题的途径。  相似文献   

12.
针对行星齿轮式变速箱的齿轮裂纹损伤难以提取特征频率和定位的问题,提出基于总体平均经验模式分解(ensemble empirical mode decomposition,简称EEMD)的齿轮局部损伤频率解调分析方法。该方法在建立的齿轮局部损伤振动信号模型的基础上,分别对太阳轮、齿圈、行星轮的裂纹损伤信号进行EEMD分解和频率解调分析,通过频谱图提取齿轮的局部损伤特征频率,从而识别变速箱中裂纹损伤齿轮的位置。综合仿真分析和试验结果表明,基于EEMD的齿轮局部损伤频率解调分析方法可以有效地提取太阳轮、齿圈和行星轮的裂纹损伤特征频率,实现行星齿轮式变速箱中齿轮裂纹损伤的定位。  相似文献   

13.
The vibration properties of compound planetary gears are more complicated than that of simple ones. This paper aims to investigate the fault properties of a compound planetary gear set in chipped sun gear conditions using model-based method. A three-dimensional lumped-parameter nonlinear dynamic model for the compound planetary gear set is established. This model considers the time-varying mesh stiffness (TVMS), the mesh phase relations, and gear chipping defects. The analytical equations are derived to quantify the TVMS reduction induced by the chipped gear based on the improved potential energy method. Further, the simulations are performed to demonstrate the fault features of sun gears with single or multiple chipped teeth in different gear stages. Moreover, the theoretical derivations are validated through the experimental signals analysis.  相似文献   

14.
针对齿轮故障信号的非线性及常伴有大量噪声干扰的问题,提出一种基于变分模态分解(VMD)的自回归(AR)模型和关联维数相结合的故障特征提取方法。该方法采用VMD将齿轮振动信号分解为一系列固有模态函数(IMF),通过频域互相关系数准则选取对信号特征敏感的IMF分量进行信号重构,对重构信号建立AR模型,并以AR模型自回归参数的关联维数作为特征量对齿轮的工作状态和故障类型进行识别。通过实测齿轮振动信号的分析,证明了所提方法的有效性。  相似文献   

15.
针对行星齿轮箱振动信号噪声干扰大、单一分类器泛化能力不强的问题,提出了一种基于深度学习多样性特征提取与信息融合的行星齿轮箱故障诊断方法。利用多目标优化算法优化多个堆栈去噪自动编码器(SDAE)以获得多个性能优异的SDAE,并提取多样性的故障特征;采用多响应线性回归模型集成多样性故障特征实现信息融合,得到多目标集成堆栈去噪自动编码器(MO-ESDAE),最后将其应用于行星齿轮箱故障诊断。实验结果表明:该方法能有效提高故障诊断精度与稳定性,具有较强的泛化能力。  相似文献   

16.
In the gear fault diagnosis, the emergence of periodic impulse components in vibration signals is an important symptom of gear failure. However, heavy background noise makes it difficult to extract the weak periodic impulse features. Therefore, the paper presents an impact fault detection method of gearbox by combining variational mode decomposition (VMD) with coupled underdamped stochastic resonance (CUSR) to extract the periodic impulse features. First, the adaptive VMD is presented to decompose the vibration signal into several intrinsic mode functions (IMFs), which can automatically determine the appropriate mode number according to the correlation kurtosis (CK) of decomposition results and extract the sensitive IMF component containing the main fault information. Next, the adaptive CUSR method is developed to analyze the selected sensitive IMF component, and the optimal system parameters are obtained by the genetic algorithm using the CK index as optimization objective function. Finally, the periodic impulse features are extracted by the output signal of CUSR system accurately. Experiments and engineering application verify the effectiveness and superiority of the proposed adaptive VMD-CUSR method for extracting the periodic impulse features in gear fault diagnosis compared to other methods.  相似文献   

17.
Fault symptoms of running gearboxes must be detected as early as possible to avoid serious accidents. Diverse advanced methods are developed for this challenging task. However, for multiwavelet transforms, the fixed basis functions independent of the input dynamic response signals will possibly reduce the accuracy of fault diagnosis. Meanwhile, for multiwavelet denoising technique, the universal threshold denoising tends to overkill important but weak features in gear fault diagnosis. To overcome the shortcoming, a novel method incorporating customized (i.e., signal-based) multiwavelet lifting schemes with sliding window denoising is proposed in this paper. On the basis of Hermite spline interpolation, various vector prediction and update operators with the desirable properties of biorthogonality, symmetry, short support and vanishing moments are constructed. The customized lifting-based multiwavelets for feature matching are chosen by the minimum entropy principle. Due to the periodic characteristics of gearbox vibration signals, sliding window denoising favorable to retain valuable information as much as possible is employed to extract and identify the fault features in gearbox signals. The proposed method is applied to simulation experiments, gear fault diagnosis and normal gear detection to testify the efficiency and reliability. The results show that the method involving the selection of appropriate basis functions and the proper feature extraction technique could act as an effective and promising tool for gear fault detection.  相似文献   

18.
液压系统电机电信号中包含丰富的系统运行状态信息,如何准确对电信号中的运行信息进行提取和分类是实现液压系统状态监测的关键。电机电流信号中蕴含的液压齿轮泵早期故障特征微弱,提取困难,用传统时频分析方法难以实现故障特征分离。本文提出基于相关系数和人工蜂群算法(Artificial bee colony,ABC)实现了对变分模态分解(Variational mode decomposition,VMD)参数的优化,同时以信号相关系数和峭度值最大为选取原则,确定有效的本征模态函数(Intrinsic mode function,IMF),并将IMF有效分量的排列熵和均方根值作为高维特征向量输入深度信念网络(Deep belief network,DBN-DNN),实现了对齿轮泵运行状态进行监测。结果表明,该方法能准确稳定地提取电流信号中携带的齿轮泵故障的微弱特征,进行齿轮泵运行状态监测,提高了齿轮故障诊断的准确性。  相似文献   

19.
An improved morphological component analysis (MCA) method is proposed for the compound fault diagnosis of gearboxes. When gear fault and bearing fault occur simultaneously, the compound fault signal of the gearbox contains meshing components (related to the gear fault) and periodic impulse components (related to the bearing fault). The corresponding fault characteristics can be separated by MCA according to the morphological differences of the components. In the proposed method, the optimal dictionary, which can represent the characteristics of bearing faults, is first selected based on the principle of minimum information entropy. Then, the compound fault signal is decomposed into the meshing component and the periodic impulse component using MCA. Finally, the separated components are subjected to the Hilbert envelope spectrum analysis. The faults of the gear and the bearing can be diagnosed according to the envelope spectra of the separated fault signal components. Simulation and experimental studies validate the effectiveness of the proposed method for the compound fault diagnosis of gearboxes.  相似文献   

20.
The paper shows that for condition monitoring of planetary gearboxes it is important to identify the external varying load condition. In the paper, systematic consideration has been taken of the influence of many factors on the vibration signals generated by a system in which a planetary gearbox is included. These considerations give the basis for vibration signal interpretation, development of the means of condition monitoring, and for the scenario of the degradation of the planetary gearbox. Real measured vibration signals obtained in the industrial environment are processed. The signals are recorded during normal operation of the diagnosed objects, namely planetary gearboxes, which are a part of the driving system used in a bucket wheel excavator, used in lignite mines. It is found that a planetary gearbox in bad condition is more susceptible to load than a gearbox in good condition. The estimated load time traces obtained by a demodulation process of the vibration acceleration signal for a planetary gearbox in good and bad conditions are given. It has been found that the most important factor of the proper planetary gearbox condition is connected with perturbation of arm rotation, where an arm rotation gives rise to a specific vibration signal whose properties are depicted by a short-time Fourier transform (STFT) and Wigner-Ville distribution presented as a time–frequency map. The paper gives evidence that there are two dominant low-frequency causes that influence vibration signal modulation, i.e. the varying load, which comes from the nature of the bucket wheel digging process, and the arm/carrier rotation. These two causes determine the condition of the planetary gearboxes considered. Typical local faults such as cracking or breakage of a gear tooth, or local faults in rolling element bearings, have not been found in the cases considered. In real practice, local faults of planetary gearboxes have not occurred, but heavy destruction of planetary gearboxes have been noticed, which are caused by a prolonged run of a planetary gearbox at the condition of the arm run perturbation. It may be stated that the paper gives a new approach to the condition monitoring of planetary gearboxes. It has been shown that only a root cause analysis based on factors having an influence on the vibration solves the problem of planetary gearbox condition monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号