首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ternary polymer blends of 80/10/10 (wt/wt/wt) polyamide6 (PA6)/polypropylene (PP)/acrylonitrile‐butadiene‐styrene (ABS), PP/PA6/ABS, and ABS/PP/PA6 were prepared in the presence of multiwalled carbon nanotubes (MWCNTs) by melt‐mixing technique to investigate the influence of MWCNTs on the phase morphology, electrical conductivity, and the crystallization behavior of the PP and PA6 phases in the respective blends. Morphological analysis showed the “core–shell”‐type morphology in 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS blends, which was found to be unaltered in the presence of MWCNTs. However, MWCNTs exhibited “compatibilization‐like” action, which was manifested in a reduction of average droplet size of the dispersed phase/s. In contrast, a separately dispersed morphology has been found in the case of 80/10/10 ABS/PP/PA6 blends in which both the phases (PP and PA6) were dispersed separately in the ABS matrix. The electrical percolation threshold for 80/10/10 PA6/PP/ABS and 80/10/10 PP/PA6/ABS ternary polymer blends was found between 3–4 and 2–3 wt% of MWCNTs, respectively, whereas 80/10/10 ABS/PP/PA6 blends showed electrically insulating behavior even at 5 wt% of MWCNTs. Nonisothermal crystallization studies could detect the presence of MWCNTs in the PA6 and the PP phases. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

2.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

3.
Dong Wang  Bao-Hua Guo 《Polymer》2011,52(1):191-200
We report a novel and effective strategy that compatibilizes three immiscible polymers, polyolefins, styrene polymers, and engineering plastics, achieved by using a polyolefin-based multi-phase compatibilizer. Compatibilizing effect and morphology development are investigated in a model ternary immiscible polymer blends consisting of polypropylene (PP)/polystyrene(PS)/polyamide(PA6) and a multi-phase compatibilizer (PP-g-(MAH-co-St) as prepared by maleic anhydride (MAH) and styrene (St) dual monomers melt grafting PP. Scanning electron microscopy (SEM) results indicate that, as a multi-phase compatibilizer, PP-g-(MAH-co-St) shows effective compatibilization in the PP/PS/PA6 blends. The particle size of both PS and PA6 is greatly decreased due to the addition of multi-phase compatibilizer, while the interfacial adhesion in immiscible pairs is increased. This good compatibilizing effect is promising for developing a new, technologically attractive method for achieving compatibilization of immiscible multi-component polymer blends as well as for recycling and reusing of such blends. For phase morphology development, the morphology of PP/PS/PA6 (70/15/15) uncompatibilized blend reveals that the blend is constituted from PP matrix in which are dispersed composite droplets of PA6 core encapsulated by PS phase. Whereas, the compatibilized blend shows the three components strongly interact with each other, i.e. multi-phase compatibilizer has good compatibilization between the various immiscible pairs. For the 40/30/30 blend, the morphology changed from a three-phase co-continuous morphology (uncompatibilized) to the dispersed droplets of PA6 and PS in the PP matrix (compatibilized).  相似文献   

4.
In this work, effect of three factors on the phase morphology and mechanical properties of ternary blends based on polystyrene (PS)/ethylene‐propylene‐diene terpolymer (EPDM)/polyamide6 (PA6) was investigated by response surface methodology (RSM). Results indicated that among the studied factors (i.e., mixing sequence, composition, and viscosity ratio of the minor phases), the first two have the greatest effect on the impact strength (75.6%) and tensile properties (tensile modulus (84.9%) and yield stress (88.9%); while EPDM/PA6 viscosity ratio has the least effect (≤ 2.1%) on the final mechanical properties. These achievements are, in fact, arising from the considerable changes in the phase morphology and the contribution share predicted by experimental design outputs. However, mixing sequences just affected on the size of dispersed particles, but samples with different compositions presented different morphology types. According to the mechanical characterization of PS/EPDM/PA6 blends, the maximum impact strength and tensile properties were not obtained simultaneously. Optimal levels of input factors, aimed to balance impact strength and tensile properties, are M1 simultaneous mixing sequence, C1 composition (70/10/20), and V1 viscosity ratio (PA6 with low viscosity). J. VINYL ADDIT. TECHNOL., 26:282–290, 2020. © 2019 Society of Plastics Engineers  相似文献   

5.
The morphology of some ternary blends was investigated. In all of the blends polypropylene, as the major phase, was blended with two different minor phases, ethylene–propylene–diene terpolymer (EPDM) or ethylene–propylene–rubber (EPR) as the first minor phase and high‐density polyethylene (HDPE) or polystyrene (PS) as the second minor phase. All the blends were investigated in a constant composition of 70/15/15 wt %. Theoretical models predict that the dispersed phase of a multiphase polymer blend will either form an encapsulation‐type phase morphology or phases will remain separately dispersed, depending on which morphology has the lower free energy or positive spreading coefficient. Interfacial interaction between phases was found to play a significant role in determining the type of morphology of these blend systems. A core–shell‐type morphology for HDPE encapsulated by rubber was obtained for PP/rubber/PE ternary blends, whereas PP/rubber/PS blends showed a separately dispersed type of morphology. These results were found to be in good agreement with the theoretical predictions. Steady‐state torque for each component was used to study the effect of melt viscosity ratio on the morphology of the blends. It was found that the torque ratios affect only the size of the dispersed phases and have no appreciable influence on the type of morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1129–1137, 2001  相似文献   

6.
The composition effect on morphology of polypropylene/ethylene–propylene–diene terpolymer/polyethylene (PP/EPDM/PE) and polypropylene/ethylene–propylene–diene terpolymer/polystyrene (PP/EPDM/PS) ternary blends has been investigated. In all of the blends, polypropylene as the major phase was blended with two minor phases, that is, EPDM and PE or PS. From morphological studies using the SEM technique a core–shell morphology for PP/EPDM/PE and separated dispersed morphology for PP/EPDM/PS were observed. These results were found to be in agreement with the theoretical predictions. The composition of components affected only the size of dispersed phases and had no appreciable effect on the type of morphology. The size of each dispersed phase, whether it forms core or shell or disperses separately in matrix, can be related directly to its composition in the blend. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1138–1146, 2001  相似文献   

7.
黎珂  黄汉雄 《化工学报》2013,64(6):2285-2290
引言对聚合物进行共混是改善其性能的重要方法,多元聚合物共混物结合了多种聚合物的优点,具有更多独特的性能,因此对多元尤其是三元共混物的研究越来越多[1-5]。聚合物共混物的相形态对其性能有着决定性的影响[6-9],因而相形态是共混物研究的一个非常重要的方面[9-12]。  相似文献   

8.
Several carbon black (CB)‐filled binary polymer blends were prepared in Haake rheometer. Distribution states of CB and effect of morphology on the electric conductivity of different ternary composites were investigated. Under our experimental condition CB particles located preferentially at the interface between polymethyl methacrylate (PMMA) and polypropylene (PP) in PMMA/PP/CB composites, in high‐density polyethylene (HDPE) phase in PP/HDPE/CB composites, and in Nylon6 (PA6) phase in polystyrene (PS)/PA6/CB, PP/PA6/CB, PMMA/PA6/CB, and polyacrylonitrile (PAN)/PA6/CB composites; the ternary composites in which CB particles locate at the interface of two polymer components have the highest electric conductivity when the mass ratio of the two polymers is near to 1 : 1. The ternary composites in which CB particles located preferentially in one polymer have the highest electric conductivity usually when the amount of the polymer component having CB particles is comparatively less than the amount of the polymer component not having CB particles; if the formulations of PS/PA6/CB, PP/PA6/CB, and PMMA/PA6/CB composites equaled and PA6/CB in them is in dispersed phase, PS/PA6/CB composites have the highest electric conductivity and PP/PA6/CB composites have the lowest electric conductivity; suitable amount of PS or PAN in PA6/CB composites increase the electric conductivity due in the formation of a parallel electrocircuit for electrons to transmit. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

9.
R.T. Tol 《Polymer》2005,46(2):383-396
In this paper the relation between the blend phase morphology and the fractionated crystallization behavior of PA6 in reactively compatibilized immiscible PS/PA6 and (PPE/PS)/PA6 immiscible blends is studied. Reactive compatibilization is used as an effective tool for controlling the blend phase morphology, and to reduce the PA6 dispersed droplet size. As reactive compatibilizers, SMA2 and SMA17 are used, which differ in their level of miscibility with the amorphous PS and (PPE/PS) components. With SMA2 a strong shift of PA6 crystallization to much higher supercoolings than before is found after compatibilization resulting in crystallization at temperatures as low as 85 °C. This is ascribed to the strong decrease of the droplet sizes down to 100-150 nm. Nucleation experiments show that heterogeneous bulk nucleation can be reintroduced in the submicron-sized PA6 droplets by adding enough nucleating agents of sufficient small size. The degree of fractionated crystallization is found to depend on the interface between PA6 droplets and surrounding medium, as it is influenced by vitrification of the matrix polymer and by the location of the compatibilizers SMA2 and SMA17. The method used for mixing the reactive compatibilizer with the blend components also affects the fractionated crystallization process.  相似文献   

10.
The current research discusses the reactive compatibilization of nylon 11 (PA11) and polypropylene (PP) using maleic anhydride grafted PP (PP-g-MA) through an extruder. PP phase is dispersed in PA11 by coalescence and droplet break-up mechanism by using polyhydroxybutyrate (PHB) as a dispersion agent that induces uniform interaction between the blend components. The reactive compatibilization ensures the mixing of polymers, and the consistent interaction of phases is controlled by dispersion. All of the blends were processed through melt processing at different compositions using a twin-screw extruder. Scanning electron microscopy was used to determine the morphologies of the binary and ternary blends. Surface tension and interfacial tension of the homopolymer characterizes the interaction of the polymers at interphase. The interaction of PHB/PA11 appeared preferable than that of PHB/PP, elaborating on the efficient dispersion and droplet formation of the PP phase. The compatibilizer maleic anhydride grafted PP (PP-g-MA) imparts a drastic effect on the compatibility of PA11-PP and PA11-PHB-PP blends and reduces PP phase particle size, which indicates the affinity of PHB and PP. The encapsulation of PP by PHB was seen in the expectation of minimum free energy models. The rheological measurements were used to understand the phase separation within blends. These measurements were also applied to understand the interaction between PA11-PP-PHB phases. The modulus values and viscosity ratio of the blends were measured to follow the chain relaxation in the melt. In the Cole–Cole plot, it was found that the reduction in PP phase size influences the relaxation of chains of blends.  相似文献   

11.
Nanocomposites of organic nano‐montmorillonite (nano‐OMMT)‐filled immiscible polyamide 6 (PA6)/polystyrene (PS) blends were prepared by three different processing methods. Masterbatch M1 of OMMT/PA6 and masterbatch M2 of OMMT/PS were prepared as separate masterbatchs by melt mixing with PA6 or PS, and then either mixed together or each mixed individually with appropriate amounts of PS or PA6, respectively. The effects of nano‐OMMT content and processing method on the structure, phase morphology, and mechanical properties of the PA6/PS/OMMT nanocomposites were investigated by X‐ray diffraction, transmission electron microscopy, scanning electron microscopy, and mechanical properties tests. The results showed that the nano‐OMMT by M1 and M2 masterbatches dispersed primarily as exfoliated platelets in the PA6 matrix in the final composites regardless of the method of preparation. A drastic decrease of dispersed PS phase size and a very homogeneous size distribution were observed with the addition of nano‐OMMT. The PA6/PS/OMMT nanocomposites prepared from the M2 displayed the smallest dispersed PS phase size and best distribution of OMMT. The improvement of the mechanical properties of the PA6/PS/OMMT nanocomposites was attributed to the enhanced compatibilization of the immiscible PA6/PS blends by using nano‐OMMT. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

12.
Ternary blends of PS and PMMA in a PE matrix were prepared by twin‐screw extrusion to investigate the core/shell encapsulation phenomenon in the composite droplet. The PS was found to encapsulate the PMMA to form composite droplets within the PE matrix as expected from the spreading coefficient theory. The effects of dispersed phase concentration, viscosity ratio, feeding sequence and twin‐screw operating conditions were investigated. The blend morphology was observed by scanning electron microscopy after selective extraction of either PS or PMMA, and average core and composite droplet diameters were determined by image analysis. Although it is known that the structure of composite droplet blends can be substantially altered through control of the volume fraction of the components in the dispersed phase, this study demonstrates that blends with a 1:1 composite droplet volume fraction are relatively stable to large variations in the minor phase viscosities and processing conditions. Twin‐screw extrusion thus provides a highly robust technique for the melt processing of blends possessing composite droplet morphologies. Polym. Eng. Sci. 44:749–759, 2004. © 2004 Society of Plastics Engineers.  相似文献   

13.
Nanocomposites based on 70/30 (w/w) polypropylene (PP)/polyamide 6 (PA6) immiscible blends and functionalized-TiO2 nanoparticles were prepared via melt compounding. The influences of TiO2 on the morphology of nanocomposites were investigated. Scanning electron microscopy results revealed the domain size of the dispersed PA6 phase decreased in presence of functionalized-TiO2 and the TiO2 nanoparticles were preferentially located at the PA6 phase and at the interfacial region between PP and PA6, which were ascertained by differential scanning calorimetry. The functionalized-TiO2 nanoparticles played the compatibilizer for the immiscible PP/PA6 blends, increasing the interaction of the two phases in certain extent. Therefore, a clear compatibiliting effect was induced by the TiO2 in the immiscible PP/PA6 blends.  相似文献   

14.
R.T. Tol 《Polymer》2005,46(2):369-382
In this paper the crystallization behavior of PA6, dispersed as droplets in various immiscible amorphous polymer matrices, is reported. PA6 was melt-mixed at various compositions with PS, (PPE/PS 50/50 wt/wt) and PPE using twin-screw extrusion. The phase morphologies of the obtained blends were analysed using SEM, etching experiments and image analysis. The crystallization behavior of PA6 was investigated by dynamic and isothermal DSC experiments. In case PA6 is dispersed as droplets, fractionated crystallization behavior occurs, characterized by several crystallization events at different, lowered crystallization temperatures. It is found to depend on the blend morphology (size of the droplets) and the thermal history of the samples (heterogeneous nucleation density). The PA6 droplet size distribution is shown to strongly influence the crystallization behavior of the droplets. Vitrification of the matrix appears to cause nucleation in the droplets at the interface. Decreasing the PA6 droplet size results in slower overall crystallization rates.  相似文献   

15.
Summary Blends of polypropylene (PP)/ethylene-octene copolymer (EOC) was studied. The influences of blend composition and processing conditions on phase morphology development of the blends were investigated by scanning electron microscopy (SEM) in detail. The minor composition formed the dispersed phase and the major composition formed the continuous phase, and the blends formed interpenetrating co-continuous morphology just at the intermediate concentration. The effect of concentration on phase coarsening was explained by the increase of dispersed phase coalescence with dispersed phase concentration’s increase. Phase coarsening and phase fine dispersing were studied. The effect of mixing time on phase morphology development of the blends was investigated, the PP/EOC (80/20) blends has already formed a well-established droplet/matrix morphology after 1.5 min of mixing, and the similar blends phase morphology persisted until 11 min of mixing. The most prominent phenomenon is that the dispersed phase domain deformed from spherical droplet to elliptical droplet, even fibrillar or sheet morphology as the rotor speed increased. The increase of shear rate and elasticity ratio was applied to interpret this phenomenon.  相似文献   

16.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
The influence of hyperbranched polymer grafted polypropylene (PP‐HBP) on the morphology of polypropylene (PP)/polyamide 6 (PA6) blends has been investigated. The final morphology was strongly influenced by the PP‐HBP compatibilizer concentration. At low concentrations, PP‐HBP acts as an emulsifying agent, reducing the size of the dispersed phase and preventing coalescence. This is due to the high reactivity and diffusitivity of PP‐HBP rapidly forming a high density of copolymers at the interface. Compared to the use of maleic anhydride grafted PP (PP‐MAH) at identical concentrations, PP‐HBP yielded a smaller dispersed phase particle size. Therefore, PP‐HBP allows the use of less compatibilizer to obtain identical morphologies. At higher compatibilizer concentrations, it has been shown that the PP‐HBP efficiently stabilizes the interface and inhibits both coalescence and breakup of the PA6 droplets. The high concentration of reactive sites and the ability of PP‐HBP to react with both chain‐ends of PA6 suggest that interfacial stabilization occurs because of the formation of a partly crosslinked interface. The interfacial stabilization effects generated by PP‐HBP should allow one to control the morphology of polymer blends in order to create specific functional morphologies.  相似文献   

18.
During melt mixing a ternary blend system comprised of a high density polyethylene matrix containing dispersed polystyrene and poly(methyl-methacrylate) spontaneously forms a composite droplet structure where the PS encapsulates the PMMA. This study demonstrates that the PS/PMMA composite droplet exhibits pure PS droplet behavior at a critical volume fraction of encapsulating phase (PS:PMMA∼0.6:0.4). This critical volume fraction is shown to be independent of the overall dispersed phase concentration, shell thickness or dispersed phase size. Furthermore, the effect is observed even though the PMMA is significantly more viscous than the encapsulating PS phase. Interfacial slip as well as the maintenance of a complete PS shell during deformation are proposed as being important factors related to this behavior. The blends were prepared via melt mixing using an internal mixer and the morphology was examined by electron microscopy.  相似文献   

19.
Phase morphology development in immiscible blends of polystyrene (PS)/nylon 6 was investigated. The blends were prepared by melt blending in a twin‐screw extruder. The influence of the blend ratio, rotation speed of the rotors, and time of mixing on the phase morphology of the blends was carefully analyzed. The morphology of the samples was examined under a scanning electron microscope (SEM) and the SEM micrographs were quantitatively analyzed for domain‐size measurements. From the morphology studies, it is evident that the minor component, whether PS or nylon, forms the dispersed phase, whereas the major component forms the continuous phase. The 50/50 PS/nylon blend exhibits cocontinuous morphology. The continuity of the dispersed phase was estimated quantitatively based on the preferential solvent‐extraction technique, which suggested that both phases are almost continuous at a 50/50 blend composition. The effect of the rotor speed on the blend morphology was investigated. It was observed that the most significant breakdown occurred at an increasing rotor speed from 9 to 20 rpm and, thereafter, the domain size remained almost the same even when the rotor speed was increased. The studies on the influence of the mixing time on the blend morphology indicated that the major breakdown of the dispersed phase occurred at the early stages of mixing. The melt rheological behavior of the blend system was studied using a capillary rheometer. The effect of the blend ratio and the shear stress on the melt viscosity of the system was investigated. Melt viscosity decreased with increase in the shear stress, indicating pseudoplastic behavior. With increase of the weight fraction of PS, the melt viscosity of the system decreased. The negative deviation of the measured viscosity from the additivity rule indicated the immiscibility of the blends. The domain size versus the viscosity ratio showed a minimum value when the viscosities of the two phases were matched, in agreement with Wu's prediction. The morphology of the extrudates was analyzed by SEM. From these observations, it was noted that as the shear rate increased the particle size decreased considerably. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3537–3555, 2002  相似文献   

20.
R.T Tol  I Vinckier  J Mewis 《Polymer》2004,45(8):2587-2601
(PPE/PS)/PA6 and PS/PA6 blends were prepared by means of melt-extrusion. They were compatibilized using the reactive styrene-maleic anhydride copolymer with 2 wt% maleic anhydride (SMA2). The effect of compatibilization on the phase inversion and the stability of the resulting co-continuous blend structures were investigated using scanning electron microscopy, dissolution and extraction experiments. The onset of co-continuity shifted towards lower PA6 concentrations according to the change in blend viscosity ratio. The melting order of the components inside the extruder could result in a change in the observed co-continuity interval in slowly developing phase morphologies. The unmodified co-continuous blends were not stable and did break-up into a droplet/matrix type of morphology upon annealing in the melt depending on the blend composition. Although the stability of the threads during annealing improved upon compatibilization because of the lower resulting interfacial tension, the decreased possibility for recombination and coalescence during flow reduced the co-continuous region for the compatibilized blends. It is proposed that a dynamic equilibrium between break-up and recombination phenomena after the initial network formation is necessary to maintain the network structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号