首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
H. Xia  L. Lu  Y.S. Meng 《Electrochimica acta》2007,52(8):2822-2828
LiNi0.5Mn1.5O4 thin films were prepared by pulsed laser deposition (PLD) on stainless steel substrates. The growth of the films has been studied as a function of substrate temperature and oxygen partial pressure in deposition, using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Electrochemical properties of LiNi0.5Mn1.5O4 thin film cathodes were investigated using cyclic voltammetry and galvanostatic charge/discharge against a lithium anode. The initial capacity and capacity retention of the films are highly dependent on the crystallinity and purity of the films. LiNi0.5Mn1.5O4 thin films grown at 600 °C in an oxygen partial pressure of 200 mTorr are well crystallized with high purity, exhibiting excellent capacity retention between 3 and 5 V with a LiPF6-based electrolyte.  相似文献   

2.
Chi-Lin Li 《Electrochimica acta》2008,53(22):6434-6443
Amorphous LiFe(WO4)2 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition at room temperature. The as-deposited and electrochemically cycled thin films are, respectively, characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectra techniques. An initial discharge capacity of 198 mAh/g in Li/LiFe(WO4)2 cells is obtained, and the electrochemical behavior is mostly preserved in the following cycling. These results identified the electrochemical reactivity of two redox couples, Fe3+/Fe2+ and W6+/Wx+ (x = 4 or 5). The kinetic parameters and chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry and alternate-current (AC) impedance measurements. All-solid-state thin film lithium batteries with Li/LiPON/LiFe(WO4)2 layers are fabricated and show high capacity of 104 μAh/cm2 μm in the first discharge. As-deposited LiFe(WO4)2 thin film is expected to be a promising positive electrode material for future rechargeable thin film batteries due to its large volumetric rate capacity, low-temperature fabrication and good electrode/electrolyte interface.  相似文献   

3.
A clear ethanol based precursor sol obtained using diethanolamine has been utilized for the deposition of TiO2 films annealed at different temperatures. The influence of annealing temperature on the structural, optical and electrochemical properties of TiO2 thin films has been examined. Diethanolamine stabilizes the precursor sol due to its chelate forming ability with the alkoxides. It reacts as a tridentate ligand with the titanium isopropoxide. The threshold for the onset of crystallization in the films is identified at a temperature of 300 °C. The SEM study on the films elucidates segregation of irregularly shaped features into finer round clusters as a function of annealing temperature. As determined from the AFM study, the roughness parameter in the films has shown an increase with the annealing temperature. Photoluminescence measurements have given an indirect evidence for the presence of stoichiometric titanium oxide in the films. An optimum crystallite size and high ion storage capacity in the 300 °C annealed film has led to its superior electrochromic activity with the transmission modulation and coloration efficiency of the same film being 42% and 8.1 cm2 C−1, respectively at 550 nm. The highest degree of porosity in the 300 °C annealed film as established from the SEM study is also the reason behind its best electrochromic performance. In addition, the 300 °C annealed film also exhibits the fastest coloration switching kinetics.  相似文献   

4.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

5.
Titanium dioxide thin films were deposited on quartz substrates kept at different O2 pressures using pulsed laser deposition technique. The effects of reactive atmosphere and annealing temperature on the structural, morphological, electrical and optical properties of the films are discussed. Growth of films with morphology consisting of spontaneously ordered nanostructures is reported. The films growth under an oxygen partial pressure of 3 × 10−4 Pa consist in nanoislands with voids in between them whereas the film growth under an oxygen partial pressure of 1 × 10−4 Pa, after having being subjected to annealing at 500 °C, consists in nanosized elongated grains uniformly distributed all over the surface. The growth of nanocrystallites with the increase in annealing temperature is explained on the basis of the critical nuclei-size model.  相似文献   

6.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

7.
Four-layer SrTiO3/BaTiO3 thin films ((ST/BT)4) with various thicknesses deposited on Pt/Ti/SiO2/Si substrates at 500 °C by double target RF magnetron sputtering have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), profilometry, capacitance-voltage and current-voltage measurements. The XRD patterns reveal the frame formation of the sputter deposited (ST/BT)4 with controlled modulation. The adhesion between the Pt bottom electrode layer and the BT layer is excellent. The dielectric constant of the (ST/BT)4 multilayer thin film increases with increasing film thickness. The effects of temperature, frequency, and bias voltage on the dielectric constant of the (ST/BT)4 multilayer thin films are discussed in detail. The leakage current density of the (ST/BT)4 multilayer with a thickness of 450.0 nm is lower than 1.0 × 10−8 A/cm2 for the applied voltage of less than 5 V, showing that the multilayer thin films with such a characteristic could be applied for use in dynamic random access memory (DRAMs) capacitors.  相似文献   

8.
The properties of spin coated CeO2-TiO2 films derived from three different sols containing equimolar quantities of cerium and titanium, fired at 500 °C have been investigated. The films have been deposited using cerium chloride and two different alkoxides and the influence of acetic acid added as a catalyst and modifier of microstructure of the coatings has also been studied. Optical, structural, thermal, and electrochemical properties have been studied and compared. Although gelation time of sols is dependent on the precursor material, enhanced transparency is exhibited by the films prepared with all the sols that have reached the state of gelation. The crystallization behavior and the porosity of the films are highly influenced by the precursor material. Acetic acid derived films with the highest porosity exhibit the highest diffusion coefficient for Li ions. Amorphicity prevailing in films derived from Ti propoxide based precursor sol as against the nanocrystalline films derived from the other sols endow higher ion insertion capacity to former films and highest coloration efficiency is attained when these films are incorporated into an electrochromic device. The highest reversibility for the charging and discharging processes and excellent electrochemical properties observed for the film derived from titanium propoxide prove its practical utility in electrochemical applications. Besides, the highest optical modulation for the electrochromic device comprising WO3 (electrochromic electrode) and titanium propoxide derived counter electrode is a manifestation of the suitability of the latter electrode in electrochromic window applications.  相似文献   

9.
Hui Xia 《Electrochimica acta》2007,52(24):7014-7021
LiCoO2 thin films were prepared by pulsed laser deposition (PLD) on Pt/Ti/SiO2/Si (Pt) and Au/MgO/Si (Au) substrates, respectively. Crystal structures and surface morphologies of thin films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The LiCoO2 thin films deposited on the Pt substrates exhibited a preferred (0 0 3) texture with smooth surfaces while the LiCoO2 thin films deposited on the Au substrates exhibited a preferred (1 0 4) texture with rough surfaces. The electrochemical properties of the LiCoO2 films with different textures were compared with charge-discharge, dQ/dV, and Li diffusion measurements (PITT). Compared with the (1 0 4)-textured LiCoO2 thin films, the (0 0 3)-textured thin films exhibited relatively lower electrochemical activity. However, the advantage of the (1 0 4)-textured film only remained for a small number of cycles due to the relatively faster capacity fade. Li diffusion measurements showed that the Li diffusivity in the (0 0 3)-textured film is one order of magnitude lower than that in the (1 0 4)-textured film. As discussed in this paper, we believe that Li diffusion through grain boundaries is comparable to or even faster than Li diffusion through the grains.  相似文献   

10.
LiCoO2 thin films were deposited using radio frequency (rf) magnetron sputtering system on stainless steel substrates. Different rf powers, up to 150 W, were applied during deposition. The as-deposited films exhibited (1 0 1) and (1 0 4) preferred orientation and the nanocrystalline film structure was enhanced with increasing rf power. The film crystallinity was examined using X-ray diffraction, Raman scattering spectroscopy and transmission electron microscopy. The compositions of the films were determined by inductively coupled plasma-mass spectroscopy. The average discharge capacity of as-deposited films is about 59 μAh/(cm2 μm) for cut-off voltage range of 4.2 and 3.0 V. From the electrochemical cycling data, it is suggested that as-deposited LiCoO2 films with a nanocrystalline structure and a favorable preferred orientation, e.g. (1 0 1) or (1 0 4) texture, can be used without post-annealing at high temperatures for solid-state thin film batteries.  相似文献   

11.
Bismuth titanate thin films are deposited on ITO/glass substrates by rf magnetron sputtering at room temperature using a Bi4Ti3O12 ceramic target. The deposited Bi4Ti3O12 films are annealed in a conventional furnace in ambient air for 10 min at temperatures ranging from 550 to 640 °C. One specimen is annealed in a crucible containing additional Bi2O3 compensation powder, while the other specimen is annealed in ambient air. XRD analysis shows that the crystal phases of films annealed with Bi2O3 powder are better than those of films annealed without Bi2O3 powder. Furthermore, the EDS results reveal that the bismuth weight percentage of the former is higher than that of the latter. SIMS analysis shows that the bismuth decreases near the surface of Bi4Ti3O12 film annealed without Bi2O3 powder, but reveals a stable distribution throughout the film annealed with Bi2O3 powder. These results imply that bismuth is readily evaporated during the thermal treatment process, particularly from the region near the film surface. Finally, the dielectric and polarization properties of the thin films annealed with Bi2O3 powder are found to be superior to those of the films annealed in ambient air.  相似文献   

12.
Transparent and adherent CeO2-ZrO2 thin films having film thicknesses ∼543-598 nm were spray deposited onto the conducting (fluorine doped tin oxide coated glass) substrates from a blend of equimolar concentrations of cerium nitrate hexahydrate and zirconium nitrate having different volumetric proportions (0-6 vol.% of Zr) in methanol. CeO2-ZrO2 films were polycrystalline with cubic fluorite crystal structure and the crystallinity was improved with increasing ZrO2 content. Films were highly transparent (T ∼ 92%), showing decrease in band gap energy from 3.45 eV for pristine CeO2 to 3.08-3.14 eV for CeO2-ZrO2 films. The different morphological features of the film obtained at various CeO2-ZrO2 compositions had pronounced effect on the ion storage capacity and electrochemical stability. CeO2-ZrO2 film prepared at 5 vol.% Zr concentration exhibited higher ion storage capacity of 24 mC cm−2 and electrochemical stability of 10,000 cycles in 0.5 M LiClO4 + PC electrolyte due to its film thickness (584 nm) coupled with relatively larger porosity (8%). The optically passive behavior of such CeO2-ZrO2 film (with 5 vol.% Zr) is affirmed by its negligible transmission modulation irrespective of repeated Li+ and electron insertion/extraction. The coloration efficiency of spray deposited WO3 thin film is found to enhance from 47 to 107 cm2 C−1 when CeO2-ZrO2 is coupled as a counter electrode with WO3 in an electrochromic device (ECD). These films can be used as stable ‘passive’ counter electrodes in electrochromic smart windows as they retain full transparency in both the oxidized and reduced states and ever-reported longevity.  相似文献   

13.
R.Z. Hu 《Electrochimica acta》2009,54(10):2843-2850
Sn/Cu6Sn5 alloy composite thin films were directly prepared by electron-beam deposition for anodes of lithium ion batteries. The thin film was comprised of micro/sub-microcrystalline Sn and Cu6Sn5, where the polyhedral micro-sized Sn grains were uniformly dispersed in the loose Cu6Sn5 matrix. Lithiation reaction kinetics were confirmed to be controlled by a diffusion step and the diffusion coefficient of Li+ in the thin film anode was determined to be 1.91 × 10−7 cm2/s. The galvanostatic cycling behavior of Sn/Cu6Sn5 composite thin film anodes was studied under different conditions. Stable capacities of more than 370 mAh/g were obtained by discharging from 1.25 to 0.1 V. Structure changes and fading mechanism of the thin film electrodes was discussed based on SEM, XRD and EDX investigations. The present results demonstrated that the multi-phase composite structure can improve electrochemical performance of the Cu-Sn alloy thin film electrodes.  相似文献   

14.
The effects of annealing temperature on the photocatalytic activity of nitrogen-doped (N-doped) titanium oxide (TiO2) thin films deposited on soda-lime-silica slide glass by radio frequency (RF) magnetron sputtering have been studied. Glancing incident X-ray diffraction (GIAXRD), Raman spectrum, scanning electron microscopy (SEM), atomic force microscopy (AFM) and UV-vis spectra were utilized to characterize the N-doped TiO2 thin films with and without annealing treatment. GIAXRD and Raman results show as-deposited N-doped TiO2 thin films to be nearly amorphous and that the rutile and anatase phases coexisted when the N-doped TiO2 thin films were annealed at 623 and 823 K for 1 h, respectively. SEM microstructure shows uniformly close packed and nearly round particles with a size of about 10 nm which are on the slide glass surface for TiO2 thin films annealed at 623 K for 1 h. AFM image shows the lowest surface roughness for the N-doped TiO2 thin films annealed at 623 K for 1 h. The N-doped TiO2 thin films annealed at 623 K for 1 h exhibit the best photocatalytic activity, with a rate constant (ka) of about 0.0034 h−1.  相似文献   

15.
First results are reported regarding the design, fabrication and operation of a DNA biochip based on a semiconductor oxide electrode that employs label-free electrical detection of the DNA hybridization. The same process of DNA functionalisation, including hydroxylation and silanization steps, was performed on two types of semiconductor oxide: Sb doped SnO2 and CdIn2O4 thin films. These oxide electrodes were laboratory-made films deposited on glass substrates using a chemical vapour deposition method, i.e. the aerosol pyrolysis technique. After having characterized some physico-chemical properties of the bare films, the label-free electrical DNA hybridization detection, without redox couple labelling, was performed using electrochemical impedance spectrometry (EIS) before and after hybridization. On both oxides, over a large frequency range, a significant increase in the impedance modulus was obtained. The increase in the case of CdIn2O4 was by a factor of 2.1 ± 0.5 and in the case of Sb doped SnO2 was by a factor of 1.6 ± 0.1. This phenomenon was especially marked on CdIn2O4 thin films, which exhibit a higher sensitivity to the surface event. The DNA hybridization to complementary DNA targets labelled with fluorescent markers was confirmed using fluorescence microscopy.  相似文献   

16.
Dense TiO2 and TiO2/CdSe coupled nanocrystalline thin films were synthesized onto ITO coated glass substrate by chemical route at relatively low temperature (≤100 °C). TiO2 films were nanocrystalline and crystallinity disappears after CdSe deposition as evidenced by X-ray powder diffraction. Surface morphology and physical appearance of films were studied from SEM and actual photo-images, reveals dense nature of TiO2 (10-12 nm spherical grains, faint violet) and CdSe (80-90 nm spherical grains, deep brown), respectively. Presence of two absorption edges in UV spectra implies existence of separate phases rather than composite formation. TiO2 film was found to have higher water contact angle (71°) than TiO2/CdSe (61°) and CdSe (56°). I-V and stability tests of photo-electrochemical cells were performed with TiO2 and TiO2/CdSe film electrodes (under light of illumination intensity 80 mW/cm2) in lithium iodide as an electrolyte using two-electrode system.  相似文献   

17.
S.B. Tang 《Electrochimica acta》2006,52(3):1161-1168
Properties of LiMn2O4 thin films deposited on polished stainless steel substrates at 400 °C and 200 mTorr of oxygen by pulsed laser deposition have been characterized by electrochemical measurements and physical analyses. The film was mainly composed of nano-crystals less than 100 nm. A maximum specific capacity of 141.9 mAh/g cycled between 3.0 and 4.5 V with a current density of 20 μAh/cm2 has been achieved. The film exhibited an excellent cycling stability up to 500 cycles. The low charge-transfer resistance at high potentials as revealed by AC impedance resulted in high charge/discharge potential and more capacity. The effect of overdischarge was limited and Jahn-Teller effect was overcome to a significant extent in this nano-crystalline film. Ex situ XRD, Raman and XPS provided supporting evidence in the changes in structure, reactivity and cycling stability of nano-crystalline LiMn2O4 film cathodes under different charge/discharge states and cycling tests. SEM images also revealed the stability of the surface topography after a long-term cycling test.  相似文献   

18.
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700 °C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15–30 nm and 20–35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.  相似文献   

19.
Sputter-deposited zirconium and Zr-16 at.% Si alloy have been anodized to various voltages at several formation voltages in 0.1 mol dm−3 ammonium pentaborate electrolyte at 298 K for 900 s. The resultant anodic films have been characterized using X-ray diffraction, transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy, and electrochemical impedance spectroscopy. The anodic oxide films formed on Zr-16 at.% Si are amorphous up to 30 V, but the outer part of the anodic oxide films crystallizes at higher formation voltages. This is in contrast to the case of sputter-deposited zirconium, on which the crystalline anodic oxide films, composed mainly of monoclinic ZrO2, are developed even at low formation voltages. The outer crystalline layer on the Zr-16 at.% Si consists of a high-temperature stable tetragonal phase of ZrO2. Due to immobile nature of silicon species, silicon-free outermost layer is formed by simultaneous migrations of Zr4+ ions outwards and O2− ions inwards. An intermediate crystalline oxide layer, in which silicon content is lower in comparison with that in the innermost layer, is developed at the boundary of the crystalline layer and amorphous layer. Capacitances of the anodic zirconium oxide are highly enhanced by incorporation of silicon due to reduced film thickness, even though the permittivity of anodic oxide decreases with silicon incorporation.  相似文献   

20.
Wen-Jing Li 《Electrochimica acta》2010,55(28):8680-8685
The electrochemical properties of nanocomposite Fe2O3-Se thin film prepared by pulsed laser deposition (PLD) method have been investigated by cyclic voltammetry and charge/discharge measurements. A large reversible capacity of nanocomposite Fe2O3-Se thin film was found to be around 650 mAh g−1. A new couple of reduction and oxidation peaks at 1.4 and 1.8 V were observed from cyclic voltammogram for the first time. Our data demonstrated that nanocomposite Fe2O3-Se exhibit larger capacity and better cycle performance than pure Fe2O3. The electrochemical reaction mechanisms of Fe2O3-Se with lithium were examined by X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM) and selected-area electron diffraction (SAED). The reversible conversions reaction of nanosized metal Fe with Li2Se and Li2O formed after initial discharge process into FeSe and Fe2O3 respectively were revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号