首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 312 毫秒
1.
Through numerical simulation for GPS data, aseism/c negative dislocation model for crustal horizontal movement during 1999-2001 in the northeast margin of Qinghai-Xizang block is presented, combined with the spatial distri-bution of apparent strain field in this area, the characteristics of motion and deformation of active blocks and their boundary faults, together with the place and intensity of strain accumulation are analyzed. It is shown that: a) 9 active blocks appeared totally clockwise motion from eastward by north to eastward by south. Obvious sinistral strike-slip and NE-NEE relative compressive motion between the blocks separated by Qilianshan-Haiyuan fault zone was discovered; b) 20 fault segments (most of them showed compression) locked the relative motion between blocks to varying degrees, among the total, the mid-east segment of Qilianshan fault (containing the place where it meets Riyueshan-Lajishan fault) and the place where it meets Haiyuan fault and Zhuanglanghe fault, more favored accumulation of strain. Moreover, the region where Riyueshan-Lajishan fault meets north boundary of Qaidam block may have strain accumulation to some degree, c) Obtained magnitude of block velocities and locking of their boundaries were less than relevant results for observation in the period of 1993-1999.  相似文献   

2.
IntroductionSichuan region is one of the extruded and connected parts between the Qinghai-Xizang (Tibet) Plateau and Yangtze block. And the joint region of Xianshuihe, Longmenshan and An(ninghe faults reflects the structure characteristics formed by the Qinghai-Xizang Plateau(s extruding to Yangtze block and the Sichuan basin evolutionary process as fore-land basin. The researches on seismic activity in Sichuan region were mainly around Xianshuihe, Longmenshan and An(ninghe faults separ…  相似文献   

3.
26 earthquakes with MS ≥5. 0 have been recorded in the northeast margin of the Qinghai- Xizang (Tibet) block since 1980,22 of which were relatively independent of other moderate- strong earthquakes. Research on the increase of small earthquake activity before the 22 moderate-strong earthquakes has indicated that small earthquake activity was enhanced before 17 of the moderate-strong earthquakes. Though the increased seismicity is a common phenomenon in the northeast margin of the Qinghai-Xizang ( Tibet ) block,we have difficulty in predicting the moderate-strong earthquakes by this phenomenon. In order to predict the moderate-strong earthquakes through the increased seismicity of small earthquakes,this paper attempts to propose a new method, which calculates small earthquake frequency through the change of distribution pattern of small earthquakes, based on the characteristics of small earthquake activity in the northeastern Qinghai-Xizang (Tibet) block,and then make primary applications. The result shows that we are able to obtain obvious anomalies in the frequency of small earthquakes before moderate strong earthquakes through the new method,with little spatial range effect on the amplitude of this small earthquake frequency anomaly. We can obtain mid to short-term anomaly indices for moderate-strong earthquakes in the northeast margin of the Qinghai-Xizang (Tibet) block.  相似文献   

4.
Introduction So small is the hypocenter area of strong earthquake, but its formation is controlled by time-space evolution of present-day crustal movement in wider-range area, and related to motion and deformation of active blocks and their boundary faults. Aseismic negative dislocation model presented by Matsuura, et al (1986) is that, the relative motion between blocks driven by present-day crustal movement may be partly locked at the block …  相似文献   

5.
Research on the 3—D Seismic Structures in Qinghai—Xizang Plateau   总被引:1,自引:0,他引:1  
Based on the recording data from the analogue and broadband digital seismic stations in and around Qinghai-Xizang (Tibet)Platean,the three dimensiomal 3-D) seismic velocity stroctures in Qinghai-Xizang Plateau were obtained by using the regional body wave tomography and surface wave tomography.The results from these two tomography methods have similar characteristics for P-and S-wave velocity structures in crust and upper mantle.They show that there are remarkahle low velocity zones in the upper crust of L hasa block in the southern Qinghai-Xizang Plateau and the lower crust and upper mantle of Qiangtang block in the northern Qinghai-Xizang Plateau.These phenomena may be related to the different steps of collision process in southern and northern Qinghai-Xizang Plateau.  相似文献   

6.
Earth temperature is one of the most important factors influencing the mechanical properties of frozen soil. Based on the field investigation of the characteristics of ground deformation and ground failure caused by the Ms8.1 earthquake in the west of the Kuniun Mountain Pass,China, the influence of temperature on the dynamic constitutive relationship, dynamic elastic modulus, damping ratio and dynamic strength of frozen soil was quantitatively studied by means of the dynamic triaxial test. Moreover, the characteristics of ground motion on a permafrost site under different temperatures were analyzed for the four profiles of permafrost along the Qinghai-Xizang (Tibet) Railway using the time histories of ground motionacceleration with 3 exceedance probabilities of the Kunlun Mountains area. The influences of temperature on the seismic displacement, velocity, acceleration and response spectrum on permafrost ground were studied quantitatively. A scientific basis was presented for earthquake disaster mitigation for engineering foundations, highways and underground engineering in permafrost areas.  相似文献   

7.
The interaction zone between southern Tianshan and northern Tarim is located at the northeast side of Pamir. It is a region with high seismicity. We constructed a seismotectonic model for the west part of this zone from geological profiles, deep crust seismic detection and earthquake focal mechanisms data. Based on the synthesized geological features, deep crust structure, and earthquake focal mechanisms, we think that the main regional tectonic feature is that the Tianshan tecto-lithostratigraphic unit overthrusts on the Tarim block. The Tianshan tectonic system includes the Maidan fault and thrust sheets in front of the fault; The Tarim tectonic system includes the underground northern Tarim margin fault, conjugate faults in basement and overthrust fault in shallow. The northern Tarim margin fault is a high angle fault deep in the Tarim crust, adjusting different trending deformation between Tianshan and Tarim. It is a major active fault that can generate large earthquakes. The other faults, such as the Tianshan overthrust system and the Tarim basement faults in this area may generate moderately strong earthquakes with different styles.  相似文献   

8.
Li Ying 《中国地震研究》2005,19(2):192-200
We have studied the seismicity features of M_S≥5.0 earthquakes two years before strong earthquakes with M_S≥7.0 occurred in the central-northern Qinghai-Xizang (Tibet) block since 1920. The results have showed that there is an obvious gap or quiescence of M_S5.0~6.9 earthquakes near epicenters. We have also studied statistical seismicity parameters of M_S5.0~6.9 earthquakes in the same region since 1950. The results have showed that earthquakes with M_S≥7.0 occurred when earthquake frequency is relatively high and earthquake time, space accumulation degrees are rising. And the prediction effect R value scores are between 0.4~0.7. We have concluded that, before earthquakes with M_S≥7.0 in the central-northern Qinghai-Xizang (Tibet) block, M_S5.0~6.0 earthquake activity in the whole area increased and accumulated in time and space, but earthquakes with M_S≥7.0 occurred where M_S5.0~6.0 earthquake activity was relatively quiet.  相似文献   

9.
INTRODUCTIONWestern Sichuan and its vicinity are in the juncture of three big blocks,the Chuandian,theBayan Har andthe South China blocks,whicharelocated onthe eastern margin of the Qinghai-Xizang(Tibet)Plateau(Fig.1).Three groups of active block boundaryfault zones that generate destructiveearthquake occurrence,whichtrend NW-,NE-and nearly SNrespectively,have been developedthere(Zhang Peizhen,et al.,2003).Western Sichuan and its vicinity have such basic tectoniccharacteristics tha…  相似文献   

10.
Tectonic deformation of Cenozoic strata,youthful tectonontorphology,and high seismicity in the western part of Sichuan and Yunnan(Southwest China)marked intensive tectonism there during the Ceno7oic.It is a good place for studying the continental geodynamics because it is far away from those active plate boundaries surrounding the East Asian continent but near the southeastern margin of the Qinghai-Xizang(Tibet)plateau.The present study discriminated two phases of tectonic deformation with quite different styles in Cenozoic.Early compression deformation,expressed by folds,thrust,and even nappe structure,mainly occurred between the middle and late Eocene.Late extension deformation expressed by block-faulting started at least in the late Pliocene.Nonconformity,absence of strata,nonsuccessive tectonism,and inverse movement of the faults in late stages illustrated that two different deformation phases should be caused by different geodynamic processes.The early compression deformation would be related to Ar  相似文献   

11.
青藏块体东北缘及其周围地区现今时空运动变形科特征   总被引:3,自引:0,他引:3  
依据非连续变形分析(DDA)方法,考虑特定块体边界不同程度的适度侵入,利用3期GPS观测资料(1991、1999、2001年),建立了青藏块体东北缘及其周围地区的一级块体运动模型和划分较细的、反映较小区域运动变形的较理想块体运动模型.模拟得到了研究区内北西西向大断裂间一级块体的运动变化特征、研究区主应变率场的分布特征及青藏块体北边界断裂的分段非均匀时空运动特征.  相似文献   

12.
INTRODUCTIONThe Qinghai_Xizang(Tibet)blockis praised as a“piston”in the earth dynamics systemof theChinese mainland,andis regarded asthe hotspot in geoscience study all along.The occurrence of theMS8·1strong earthquake on November14,2001,inside the Qin…  相似文献   

13.
Basic characteristics of active tectonics of China   总被引:84,自引:8,他引:76  
Active tectonics is inferred to all the structures which have been active since the late Pleisto-cene, 100—120 ka B.P., are still active recently, and will be active in a certain time period in the future, such as active faults, active folds, active basi…  相似文献   

14.
Introduction According to the negative dislocation model (Matsu′ura et al, 1986), the relative motion be-tween active blocks under contemporary crustal movement is likely to be partially blocked on the boundaries. Suppose the lower ductile zone of boundary could slip freely, while due to the fric-tional resistance, etc., the upper brittle zone would restrict such kind of relative motion, so as to give rise to stress and strain accumulation. Namely, the surface displacement in the block bound-…  相似文献   

15.
青藏高原北部活动地块内部的活断层定量资料   总被引:5,自引:0,他引:5  
文中定义了祁连山活动地块的边界,列表给出了近十几年来在青藏高原北部活动地块内部的活断层定量资料。其内容主要包括:活断层的编号、名称、产状、主要的地质地貌标志、活动年代、断层分段、断层滑动速率、古地震及其年代、地震破裂带的主要特征等。这些资料表明:青藏高原北部活动地块的8级大地震集中在它的边界活断层上,断层的滑动速率都在5~12mm/a左右;7级左右的地震发生在其内部规模较小的断层上,断层的滑动速率都在1~3mm/a左右;青藏高原北部活动地块内部的活断层,可以将该活动地块划分为几个次级地块,这些次级活动地块以变形为主,没有发生旋转;我们的结果支持青藏高原"连续变形"的假说  相似文献   

16.
Based on the concept of "active blocks" and spatial distribution of historical earthquakes with surface ruptures as well as major and subordinate active faults. The Sichuan-Yunnan region can be divided into four first-order blocks. They are the Markam block (I), the Sichuan-Yunnan rhombic block (II), Baoshan-Pu'er block (III), and Mizhina-Ximeng block (IV). Cut by sub-ordinate NE-trending active faults, the Sichuan-Yunnan rhombic block (II) can be further divided into two sub-blocks: the northwestern Sichuan sub-block (II1) and the middle Yunnan sub-block (II2), while the Baoshan- Pu'er block (III) can be further divided into three sub-blocks: Baoshan sub-block (III1), Jinggu sub-block (III2), and Mengla sub-block (III3). A quantitative study of offset landforms is carried out and the basic types of active faults and their long-term slip rates along the major boundaries of active blocks of different orders in the Sichuan-Yunnan region are determined, through slip vector analysis, the motion states of the active blocks are clarified and the deformation coordination on the block margins is discussed. It is suggested that the tectonic motion of the blocks in this region is a complex or superimposition of three basic types of motions: southeastward sliding, rotating on vertical axis, and uplifting. The Markam block (I), the northwestern Sichuan sub-block (II1), and middle Yunnan sub-block (II2) have a southeastward horizontal sliding rate of 1-5 mm/a, clockwise rotating angular rate of 1.4-4(/Ma, and uplifting rate of about 1 mm/a. The Baoshan-Pu'er (III) and Mizhina-Ximeng (IV) blocks have also been extensively clockwise rotated. This pattern of motion is a strain response to the collision between the Indian and Eurasian plates and the localized deformation and differential slip on the block margins associated with the northward motion of the Indian Plate. Because a set of transverse thrusts between the blocks absorbs and transforms some components of eastward or southeastward sliding motion, the eastward escape or extrusion of the Tibetan Plateau is limited as "imbricated thrusting transformation-limited extrusion model".  相似文献   

17.
青藏高原西北缘地球动力学初探   总被引:8,自引:0,他引:8       下载免费PDF全文
郑剑东 《地震地质》1996,18(2):119-127
从新构造单元划分、活动断层、活动褶皱、地壳升降运动、地震活动及新生代火山活动等方面论述了该地区的新构造及现代构造运动特征,最后讨论了该区和青藏高原形成的地球动力学问题。认为青藏高原在其形成过程中既有印度板块的向北俯冲和碰撞作用,又有塔里木块体的向南楔入,既有高原物质向外扩展作用,又有周边拗陷向高原内部渗透作用,所以青藏高原的岩石圈是处于一个四面受压,上出下入的动力学状态  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号