首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Acoustic emission analysis is used to investigate microscopic damage mechanisms and damage progress in unidirectional glass and carbon fibre reinforced composites. Under static loading the influence of fibre orientation on damage initiation and propagation is determined. A novel polyurethane matrix system significantly enhances material performance in terms of crack initiation load levels, crack growth, damage tolerance and off-axis tensile strength. Hysteresis measurements during stepwise increasing dynamic load tests highlight the effect of fibre–matrix-adhesion and resin fracture toughness in unidirectional 0° fibre reinforced composites. Acoustic detection of beginning fibre breakage correlates with a significant increase of loss work per cycle.  相似文献   

2.
The stress corrosion characteristics of uniaxial glass fibre reinforced thermosetting resin composites have been examined in hydrochloric acid at 80°C. A simple technique based on linear elastic fracture mechanics (LEFM) is presented for characterizing crack growth in these materials subjected to hostile acidic environments. The environmental stress corrosion cracking is investigated both for different types of resin and different types of glass fibre reinforcements. Two matrices were used: DERAKANE* 411-45 epoxy vinyl ester resin (based on Bisphenol-A epoxy resin) and DERAKANE 470-30 epoxy vinyl ester resin (based on epoxidized novolac resin). Two glass fibre types were employed: standard E-glass fibre and ECRGLAS®, a special type of E-glass with superior acid resistance. Model experiments using a modified double cantilever beam test with static loading have been carried out on unidirectional composite specimens in 1 M hydrochloric acid solution at 80°C. The rate of crack growth in the specimen depends on the applied stress, the temperature and the environment. Consequently, the lifetime of a component or structure made from glass fibre reinforced plastics (GRP) subjected to stress corrosion conditions, could be predicted provided the dependence of crack growth rate on stress intensity at the crack tip is known. Scanning electron microscope studies of the specimen fracture surfaces have identified the characteristic failure mechanisms. The most important finding of this work is that the selection of DERAKANE epoxy vinyl ester resins reinforced with ECRGLAS® fibre exhibited superior resistance to crack growth at 80°C compared to similar E-glass reinforced composites at room temperatures.  相似文献   

3.
袁华  王成国  卢文博  于美杰  陈旸  乔琨 《功能材料》2011,42(6):1094-1096,1099
采用改性酚醛树脂为粘结剂,连续碳纤维和短切纤维为增强相,铜为导电相,石墨为润滑相,利用热压技术制备碳纤维增强受电弓滑板.对试样进行电阻测试、冲击试验以及磨损试验,利用SEM对冲击断面和磨损形貌进行观察.结果表明,连续碳纤维增强滑板的冲击性能和耐磨性明显优于短切纤维增强滑板;碳纤维含量对滑板的机械性能影响较大;纤维与树脂...  相似文献   

4.
The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).  相似文献   

5.
For the first time, the brittle fracture of epoxy‐based nanocomposite reinforced with MWCNTs (multi‐walled carbon nanotubes) and subjected to mixed mode II/III loading conditions is investigated. This experimental investigation is carried out using a newly developed test configuration. Araldite LY 5052 epoxy, which is a resin frequently used in aerospace industry, is utilized to fabricate pure epoxy and nanocomposite test specimens with two different MWCNTs contents of 0.1 and 0.5 wt%. The obtained experimental results reveal that adding MWCNTs to epoxy resin up to 0.5 wt% improves the fracture toughness under pure mode II and pure mode III loading with an increasing trend. This is while the improvement under mixed mode II/III loading is reduced by adding nanotubes more than 0.1 wt%. To justify the variations of fracture toughness in terms of nanoparticles content, SEM (scanning electron microscopy) photographs of the fracture surfaces of the specimens in the vicinity of the initial crack front are prepared. Additional fracture mechanisms caused by adding carbon nanotubes are discussed in detail based on the provided SEM images.  相似文献   

6.
Synchrotron Radiation Computed Tomography (SRCT) and Synchrotron Radiation Computed Laminography (SRCL) permit 3D non-destructive evaluation of fracture micro-mechanisms at high spatial resolutions. Two types of particle-toughened Carbon Fibre Reinforced Polymer (CFRP) composites were loaded to allow crack growth in Modes I and II to be isolated and observed in standard and non-standard specimen geometries. Both materials failed in complex and distinct failure modes, showing that interlaminar fracture in these materials involves a process zone rather than a singular crack tip. The work indicates that incorporating particle/resin, fibre/interlayer and neat resin failure is essential within models for material response, since the competition between these mechanisms to provide the energetically favourable crack path influences the macro-scale toughness. The work uniquely combines the strengths of SRCT and SRCL to compare failure micro-mechanisms between two specimen geometries, whilst assessing any edge effects and providing powerful insight into the complex micro-mechanical behaviour of these materials.  相似文献   

7.
《Composites Part A》2007,38(1):34-43
Fracture behavior of vinyl ester resin and the methods that can be used to toughen vinyl ester resin were studied. Neat resin, 5% by weight nanoclay, 5% by weight core shell rubber (CSR) and hybrid system (3% nanoclay and 2% CSR by weight) were the material systems considered for comparing fracture toughness. Three types of cracks were used to determine the stress intensity factors at failure, viz., sharp crack, blunt crack and notch. The critical stress intensity factor in the case of sharp cracks improved significantly when compared to neat resin. In the case of notched and blunt cracked specimens, a reduction in stress intensity factors (at failure) was observed for reinforced systems. However, for notched and blunt cracked specimens, it was shown from the morphology of the fracture surface that the stress intensity factor calculated by assuming a notch or a blunt crack as an ideal crack was not the controlling parameter for fracture. A method for quantifying the crack tip sharpness using fracture surface roughness has been proposed.  相似文献   

8.
The fracture properties of unidirectional flyash filled and unfilled glass fibre and carbon fibre reinforced epoxy resin composites are studied in relation to the variation of width ratio (a/W) and fibre angle. The results indicate that the fracture toughness, fracture surface energy and change in elastic strain energy are dependent on the width ratio but the effect of fibre angle between 30 and 60° is not very dependent on fracture properties due to the arrest of the crack path in fibre composites by flyash particles.  相似文献   

9.
This paper deals with the microstructure-property relationships of particle toughened poly (phenylene-sulphide) (PPS) and of two short glass and carbon fibre reinforced PPS versions. The microstructural characterization of injection-moulded plaques was performed by the use of differential scanning calorimetry and scanning electron microscopy. Studies of the materials' fracture toughness using compact tension specimens, revealed a clear influence of the type of fibre reinforcement and of the external testing conditions, i.e. temperature,T, and loading rate,v. Failure mechanisms of the composite materials were analysed by fractographic studies in the SEM. The final presentation of the results was performed in terms of failure maps and fracture toughness-elastic modulus maps. The latter can be used by engineers or designers for a systematic material evaluation with respect to a certain property profile at defined external service conditions ofT andv.  相似文献   

10.
Using the fibre reinforced plastics (FRP) laminates consisting of glass chopped strand mat and unsaturated polyester resin, experiments were conducted under various conditions in order to determine the fracture toughness for crack instability. Crack growth was judged not by cracking of the resin matrix but by break of the glass fibres. The crack front was considered to be located in the section which was cracked through the 90% of the specimen thickness. Crack extension resistance (R-curves) thus obtained did not significantly vary with specimen thickness and initial crack length, but depended greatly on specimen configurations, compact tension (CT) and centre-cracked tension (CCT) specimens. The R-curve for a CT specimen was steeper than the one for a CCT specimen, which is quite contrary to the tendency for metals. It was deduced that the instability fracture toughness calculated from the maximum load on a load-deflection diagram, K max, was scarcely affected by specimen thickness, initial crack length and specimen geometry (i.e. loading configuration), and therefore could be regarded as a material constant of the FRP used.  相似文献   

11.
In the study, fracture behaviour of short bamboo fibre reinforced polyester composites is investigated. The matrix is reinforced with fibres ranging from 10 to 50, 30 to 50 and 30 to 60 vol.% at increments of 10 vol.% for bamboo fibres at 4, 7 and 10 mm lengths respectively. The results reveal that at 4 mm of fibre length, the increment in fibre content deteriorates the fracture toughness. As for 7 and 10 mm fibre lengths, positive effect of fibre reinforcement is observed. The optimum fibre content is found to be at 40 vol.% for 7 mm fibre and 50 vol.% for 10 mm fibre. The highest fracture toughness is achieved at 10 mm/50 vol.% fibre reinforced composite, with 340% of improvement compared to neat polyester. Fractured surfaces investigated through the Scanning Electron Microscopy (SEM) describing different failure mechanisms are also reported.  相似文献   

12.
Damage zones that form around crack tips before the onset of fracture provide significant data for evaluating the fracture behavior of polymeric materials. The size of the damage zone correlates closely with the fracture toughness of the resin. In this study, we investigate the relationship between the fracture toughness and damage zone size around crack tips of a rubber-modified epoxy resin under mixed-mode conditions. The fracture toughness, GC, based on the energy release rate, is measured using an end-notched circle type (ENC) specimen. The deformation of rubber particles in the damage zones is also observed using an optical microscope. The results show that the fracture toughness, GC, of the rubber-modified epoxy resin is closely related to the area of the damage zone. In the specimen with a loading angle of 30°, the rubber particles were deformed ellipsoidally due to the difference between the first and second principal stresses.  相似文献   

13.
The strength, toughness and resistance to cyclic crack propagation of composites consisting of copper reinforced with short tungsten wires of various lengths have been studied and the results compared with the behaviour of continuously reinforced composites manufactured by the same method, i.e. by vacuum hot-pressing. It has been found that whereas the resistance to fatigue crack growth of continuously reinforced composites is very similar to that of continuous Al/stainless steel composites reported elsewhere, the addition of short fibres completely changes the mode of fracture, and no direct comparisons are possible. In effect, short fibres inhibit single crack growth by causing plastic flow to be distributed rather than localized, and although these composites are much less strong than continuous fibre composites, they nevertheless have much greater fatigue resistance. The fracture toughness of the composites is thought to be derived simply from the separate contributions of matrix and fibre plastic flow and, in composites containing fibres near to the critical length, from the very substantial work of fibre pull-out.  相似文献   

14.
Experimental and numerical analyses are performed to determine the translayer mode-I fracture toughness of a thick-section fiber reinforced polymeric composite using the eccentrically loaded, single-edge-notch tension, ESE(T) specimen. Finite element analyses using the virtual crack closure technique were performed to assess the effect of material orthotropy on the mode-I stress intensity factors in the ESE(T) specimen. The stress intensity factors for the proposed ESE(T) geometry, are calculated as a function of the material orthotropic parameters. The formula is validated for a class of thick composite materials. The thick composite tested in this study is a pultruded composite material that consists of roving and continuous filament mat layers with E-glass fiber and polyester matrix materials. Data reduction from the fracture tests was performed using two methods based on existing metallic and composite ASTM [ASTM E 1922, Standard Test Method for Translaminar Fracture Toughness of Laminated Polymer Matrix Composites, Annual Book of ASTM Standards, 1997; ASTM E 399, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, Annual Book of ASTM Standards, 1997] fracture testing standards. Criteria for assessing test validity and for determining the critical load used in calculating the fracture toughness were examined. Crack growth measurements were performed to determine the amount of stable crack growth before reaching critical load. The load versus notch mouth opening displacement, for different crack length to width ratios is affected by material orthotropy, nonlinearity, and stable crack propagation. The mode-I translayer fracture toughness and response during crack growth is reported for ESE(T) specimen with roving layers oriented both, transverse and parallel to the loading direction.  相似文献   

15.
Dispersion of nano-sized, silicate-based filler in epoxy resin is expected to yield improved materials properties in several areas. Various mechanical properties, specifically improved fracture toughness, as well as improved flame-retardant effects are of interest. The final objective of the research is investigating whether a nano-modified epoxy matrix yields improved delamination resistance in a fiber-reinforced laminate compared to a laminate with neat epoxy as matrix material. As a first step towards this goal, the fracture toughness of nano-modified epoxy resin is compared with that of the neat resin. Fracture toughness improvement up to about 50% and energy release rates increased by about 20% are observed for addition of 10 wt.% of organosilicate clay.  相似文献   

16.
Hemp and jute fibre reinforced polyester composites were fabricated to various fibre volume fractions (V f) up to 0.45. Laminates reinforced with a chopped strand mat (CSM) glass fibre were also manufactured. The tensile properties of these materials were evaluated. Fracture toughness was assessed, using linear elastic fracture mechanics (LEFM) principles, under quasi-static loading conditions. At equivalent V f (0.2) it was found that the fracture toughness (K Ic) of the CSM glass fibre reinforced material was approximately 3 times greater than that of the natural fibre reinforced laminates and an order of magnitude greater than the unreinforced polymer alone. Critical strain energy release rates (G c) and plastic zone radii were computed. The G c of the natural fibre reinforced laminates was approximately an order of magnitude lower than that of the CSM reinforced material at the same V f. It was hypothesised that the size of the crack-tip plastic zone influences the energy absorbing capacity of the material. By comparing the relative volumes of the plastic zones, implications regarding the toughening mechanisms operative in natural fibre reinforced composites have been made. The applicability of LEFM to characterise toughness in these materials is discussed.  相似文献   

17.
The major objective of this study was to determine the fracture toughness and fracture surface energy of epoxy, epoxy/fly-ash, epoxy/carbon fibre, epoxy/carbon fibre/fly-ash, epoxy/glass fibre and epoxy/glass fibre/fly-ash composites. The quality of composite specimens was evaluated by the ultrasonic method. The results show that a fly-ash particle can arrest the crack path and thus improve the fracture properties of fibre reinforced plastic (FRP) composites. The results of this study have further significance in view of the fact that fly-ash powder is far cheaper than carbon fibre, glass fibre and epoxy resin.  相似文献   

18.
The damage tolerance of an aluminium roll-bonded laminate (ALH19) and a glass fibre reinforced laminate (GLARE) (both based on Al 2024-T3) has been studied. The composite laminates have been tested under 3-point bend and shear tests on the interfaces to analyze their fracture behaviour. During the bend tests different fracture mechanisms were activated for both laminates, which depend on the constituent materials and their interfaces. The high intrinsic toughness of the pure Al 1050 layers present in the aluminium roll-bonded laminate (ALH19), together with extrinsic toughening mechanisms such as crack bridging and interface delamination were responsible for the enhanced toughness of this composite laminate. On the other hand, crack deflection by debonding between the glass fibres and the plastic resin in GLARE was the main extrinsic toughening mechanism present in this composite laminate.  相似文献   

19.
纤维类型对纤维增强SiC基复合材料性能的影响   总被引:5,自引:3,他引:2       下载免费PDF全文
对比了采用先驱体浸渍法制备的三种不同纤维增强SiC基复合材料的性能差异,并从材料的微观结构特征入手分析了差异产生的原因。通过研究发现,采用Hi-Nicalon纤维增强的SiC基复合材料具有较好的性能,单向复合材料弯曲强度达到703.6 MPa, 断裂韧性达到23.1 MPa·m1/2;采用国产吉林碳纤维(JC)制备的SiC基复合材料也具有较好的性能,弯曲强度为501.1 MPa,断裂韧性为13.8 MPa·m1/2。   相似文献   

20.
Hybrid nano/microcomposites with a nanoparticle reinforced matrix were developed, manufactured, and tested showing significant enhancements in damage tolerance properties. A woven carbon fiber reinforced polymer composite, with the polymer (epoxy) matrix reinforced with well dispersed carbon nanotubes, was produced using dispersant-and-sonication based methods and a wet lay-up process. Various interlaminar damage tolerance properties of this composite, including static strength, fracture toughness, fatigue life, and crack growth rates were examined experimentally and compared with similarly-processed reference material produced without nanoreinforcement. Significant improvements were obtained in interlaminar shear strength (20%), fracture toughness (180%), shear fatigue life (order of magnitude), and fatigue crack growth rate (factor of 2). Observations by scanning electron microscopy of failed specimens showed significant differences in fracture surface morphology between the two materials, related to the differences in properties and providing context for understanding of the enhancement mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号