首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 146 毫秒
1.
徐立环  汪佳男  苏畅 《功能材料》2023,(12):12091-12098
硅碳材料作为锂离子电池负极材料具有广阔地发展前景。利用水热法和高温碳化法制备了蔗糖碳/硅复合材料(SC/Si),并在此基础上与石墨复合制备出具有石墨导电骨架结构的蔗糖碳/硅-石墨复合材料(SC/Si-Gr),并探究其作为锂离子电池负极材料电化学和电池性能。结果表明,蔗糖碳均匀包覆在纳米硅表面,形成的蔗糖碳/硅复合材料的电化学性能和电池性能随着蔗糖碳含量增加而提高。随着石墨的引入,构建的SC/Si-Gr三元复合材料的电化学性能得到进一步提升。当蔗糖:硅:石墨投料质量比为1∶1∶0.5时,形成的SC/Si-Gr(1∶1∶0.5)复合材料,在电流密度为0.1 A/g条件下,第三圈稳定之后的放电比容量为1 005.1 mAh/g;循环100圈之后放电比容量为819 mAh/g,充放电库伦效率保持在98%左右。在1 A/g大电流密度下,平均放电比容量为437.91 mAh/g。这归功于石墨的加入形成有效的导电骨架结构,提高了首次循环库伦效率,加速锂离子的传输速率,使蔗糖碳/硅-石墨复合材料呈现出良好的循环稳定性和充放电倍率性能。  相似文献   

2.
亓鹏  朱丁  陈云贵 《功能材料》2012,43(5):657-659
采用湿法混料及高温热解法制备了锂离子电池用硅/石墨/碳复合负极材料,并研究了不同配方的复合材料结构及电化学性能。研究发现,硅含量为20%(质量分数)时,复合材料首次可逆容量为865mAh/g,循环30次后仍为757mAh/g,容量保持率可达88%,大大改善了硅基材料作为锂离子电池负极材料的电化学性能。  相似文献   

3.
通过氧化、PDDA-PSS-PDDA改性、包覆石墨烯、复合对苯二胺、800℃碳化,从而制得硅/石墨烯/碳复合材料,并对其形貌及性能进行了研究。结果表明,石墨烯含量为200mL时,制备的复合材料作为锂离子电池负极材料表现出良好的电化学性能,首次可逆充电比容量为957.2mAh/g,循环100次后,比容量可稳定在761.0mAh/g。  相似文献   

4.
采用纳米硅和多壁碳纳米管(MWCNTs)复合材料作为活性材料,以纸纤维为基体,MWCNTs为导电剂制得的MWCNTs导电纸代替铜箔集流体应用于硅基锂离子电池。采用扫描电子显微镜、透射电子显微镜、恒流放电测试、电化学阻抗对复合材料的形貌和电化学性能进行分析。结果表明,采用MWCNTs导电纸-纳米硅复合的锂离子电池在80mA/g的电流密度下,循环50次后比容量达到约1000mAh/g,在2000mA/g大电流密度下仍保持好的循环稳定性。  相似文献   

5.
锂离子电池硅基负极材料的理论比容量比传统石墨材料高10倍, 是最有前途的锂离子电池负极材料之一。然而硅基纳米材料的制备工艺复杂、成本高昂, 严重限制了锂离子电池硅负极的商业应用。本工作采用溪木贼为原料, 通过深度还原、浅度氧化和碳包覆工艺制备了三维多孔生物质硅/碳复合材料(多孔3D-bio-Si/C)。三维多孔结构不仅有利于Li+的快速传输, 而且提供足够的空隙缓解在脱-嵌锂过程中发生的体积变化。得益于三维结构中大量的孔隙和高强度的外部碳层, 多孔3D-bio-Si/C制备的电极表现出优异的电化学性能。当电流密度为1 A/g时, 多孔3D-bio-Si/C的可逆容量为1243.2 mAh/g, 循环400次后仍可保持933.4 mAh/g, 容量保持率高达89%。利用溪木贼作为生物质硅源制备高性能硅基负极材料, 实现了低成本、可规模化、绿色和可持续的合成路线, 有望为Si基锂离子电池负极材料的商业应用打下基础。  相似文献   

6.
锂离子电池多孔硅/碳复合负极材料的研究   总被引:1,自引:0,他引:1  
以商业化多晶硅粉为原料, 采用金属银催化剂诱导化学腐蚀的方法制得三维多孔硅材料。通过优化腐蚀条件, 得到孔径约为130 nm, 比表面为4.85 m2/g的多孔硅材料。将多孔硅和PAN溶液混合球磨并经高温烧结后在多孔硅表面包覆上一层致密的无定形碳膜, 从而制得多孔硅/碳复合材料作为锂离子电池的负极材料。3D多孔硅结构可以缓解电化学嵌/脱锂过程中材料的体积效应, 无定形碳膜层可有效改善复合材料的导电性能。电化学性能测试表明, 该多孔硅/碳复合负极材料电池在0.4 A/g的恒电流下, 首次放电容量3345 mAh/g, 首次循环库伦效率85.8%, 循环55次后容量仍保持有1645 mAh/g。并且在4 A/g的倍率下, 容量仍维持有1174 mAh/g。该方法原料成本低廉, 可规模化生产。  相似文献   

7.
锂离子电池用高容量负极材料普遍存在首次不可逆容量高、循环性能差等问题. 本文采用高温固相法制备了硅铝/碳锂离子电池负极材料, 制备出的复合负极材料的比容量远高于目前锂离子电池普遍使用的中间相碳微球, 循环寿命则优于同粒度的硅单体为活性中心的硅碳复合材料. Al引入Si/C复合材料中, 有效抑制了材料的首次嵌锂深度,且减缓了电压滞后现象. 制备的复合负极材料首次可逆容量达到600mAh/g, 首次充放电效率在85\%以上, 25次循环后容量仍保持90%以上.  相似文献   

8.
铝作为负极材料其理论容量较高,但铝在充放电过程中会出现严重的体积膨胀,导致循环性能差。为克服铝体积膨胀严重的缺点,采用简单的球磨法成功制备出铝/石墨复合材料。利用X射线衍射仪、扫描电子显微镜对复合材料的结构和形貌进行分析。电化学性能测试表明,铝/石墨复合材料首次放电比容量高达1004mAh/g,循环15次后容量保持在300mAh/g。铝/石墨复合材料拥有较高的放电比容量和较好的循环性能,在锂离子电池负极材料中具有潜在的应用价值。  相似文献   

9.
硅/碳复合材料作为最具潜力的下一代阳极材料,受到广泛关注。为减少硅巨大膨胀所产生的应力,避免硅纳米颗粒的粉化,提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的多壁碳纳米管(MWCNTs)纸,嵌入纳米硅制得Si/MWCNTs/纤维素复合柔性锂离子电池阳极。FESEM显示,纳米硅均匀地嵌入在MWCNTs构建的三维导电网络中,纳米硅和导电载体具有良好的接触,使得界面电阻大幅下降,同时纳米硅在电池充放电过程中具有足够的膨胀空间,保证了材料的结构稳定性和化学稳定性。电化学检测显示,其首次放电比容量达到2024 mAh/g,循环30次后比容量维持在850 mAh/g,展示出良好的循环稳定性和较高的比容量。同时,其制作工艺相比传统涂敷类阳极得以简化,可操作性高,易于实现产业化。  相似文献   

10.
李旭  孙晓刚  陈玮  王杰 《复合材料学报》2018,35(11):3219-3226
为提高硅基锂离子电池的电化学性能,制备了一种多微孔结构的集流体。以纸纤维为基体,多壁碳纳米管(MWCNTs)为导电剂,制得MWCNTs/纸纤维复合多孔导电纸代替铜箔作为负极集流体。MWCNTs负载中空Si微球复合材料作为负极活性材料。FESEM分析显示,中空Si-MWCNTs复合活性物质均匀分布在MWCNTs构建的三维导电网络的孔隙中,从而保证了材料的结构稳定性和化学稳定性。所制备的中空Si-MWCNTs/纸纤维复合锂离子电池具有良好的循环稳定性和较高的比容量,同时具有可逆性。在0.02 C的电流密度下,循环30次后其比容量稳定在1 300 mAh/g。在3 C的大电流密度下,比容量仍可稳定保持在330 mAh/g。恢复0.25 C充放电后,容量恢复为1 150 mAh/g。  相似文献   

11.
以ZIF-67为模板制备了一系列具有不同金属Co负载量的S/Co-NC复合材料, 并将其应用于锂-硫电池正极中进行电化学性能研究。采用扫描电镜(SEM)和透射电镜(TEM)对Co-NC材料的多面体形貌及多孔结构进行表征; 采用X射线衍射(XRD)分析了Co-NC中金属Co的结晶状态; 采用氮气吸脱附方法分析了Co-NC材料的比表面积及孔结构。研究表明, 当刻蚀时间为48 h, 即Co含量为15.93wt%时, 复合硫正极呈现出最佳的循环性能以及倍率性能, 在0.2C电流密度下从第50圈到200圈循环的容量保持率为94.84%, 5.0C高倍率下的放电比容量为718.8 mAh?g -1。  相似文献   

12.
以蛋白石页岩为载硫体, 通过化学沉积法制备蛋白石页岩/硫复合材料, 再利用化学氧化聚合法在其表面包覆一层聚苯胺, 制备出一种新型的蛋白石页岩/硫-聚苯胺复合材料, 作为锂硫电池的正极材料。SEM、TEM和BET等测试结果表明蛋白石页岩呈层状多孔结构, 小尺寸硫在材料内分布均匀,聚苯胺包覆的厚度约为400 nm。电化学性能测试表明, 蛋白石页岩/硫-聚苯胺正极活化后放电比容量最高达到1164.93 mAh/g, 在0.5C (1.0C=1675 mA/g)倍率下, 循环300次后放电比容量为539.30 mAh/g, 库伦效率始终保持在95%以上, 说明蛋白石页岩具有良好的吸附性, 同时导电聚苯胺包覆层具有双效固硫的作用, 有利于吸附多硫化物和抑制穿梭效应。  相似文献   

13.
The requirement for silicon-based anode material is growing and has received attentions. Silicon is a promising anode material for lithium-ion batteries due to the high theoretical capacity. However, the high volumetric variability of silicon has led to severe chalking and rapid capacity degradation. To ameliorate these problems, a carbon-covered silicon material with a 3D conductive network structure was prepared employing glucose and phytic acid as carbon sources. When acted as the anode for Lithium-ion batteries, the prepared composite material delivered 1612 mAh/g in the first cycle and approximately 600 mAh/g at 0.1 A/g after 200 cycles. In addition, even at 5 A/g, a high capacity of 503 mAh/g was reached, and when recovered to 0.1 A/g, the capacity of 878 mAh/g was maintained.  相似文献   

14.
Bi2Mn4O10具有高的理论比容量, 被认为是一种理想的锂离子电池负极材料。本研究以硝酸铋和乙酸锰为原料, 采用聚丙烯酰胺凝胶法制备Bi2Mn4O10负极材料, 考察了制备条件对Bi2Mn4O10负极材料的物相、形貌及电化学性能的影响。结果表明: 在丙烯酰胺含量与总金属离子摩尔比为8 : 1, 葡萄糖浓度为1.11 mol/L, 热处理温度为873 K的条件下, 可得类球型、分散性良好的纯相Bi2Mn4O10粉末。作为负极材料, Bi2Mn4O10粉末在0.2C (1C=800 mA/g)倍率下循环50圈后可保持496.8 mAh/g的比容量, 容量保持率为76.9%; 3C倍率下放电容量为232 mAh/g。  相似文献   

15.
锂硫电池作为极具潜力的下一代二次电池受到广泛关注。然而, 对于含硫正极的研究仍处于实验探索阶段, 商业化的碳纤维毡应用于硫正极鲜有报道。本研究制备了锂硫电池用碳纤维支撑柔性碳硫复合电极, 并对其进行了物性及电池性能的研究。结果发现, 碳纤维毡具有多孔隙的三维网络结构, 与具有微孔结构的多孔碳共同构成正极支撑体, 能够物理固定正极材料, 有助于提高电池的能量密度和锂硫正极的导电性, 界面电阻由原来的97.9 Ω降到22.6 Ω。进一步研究表明, 碳纤维毡做集流体的样品在首圈0.05C倍率下, 具有996.7 mAh/g的放电比容量, 在2C高倍率下循环140圈后仍保持666.7 mAh/g的放电比容量, 而铝箔样品仅为772.9和471.6 mAh/g。同时, 本研究使用的LA132水系粘结剂、super-P导电剂价格低廉, 球磨制备工艺可规模化生产、安全环保, 可以为锂硫电池工业化生产和应用提供参考。  相似文献   

16.
因具有较短的锂离子扩散路径、大的比表面积等优势, 球形碳材料在锂离子电池负极材料中展露出良好的应用前景。研究以新疆库车产煤为原料, 采用电弧放电法及化学活化法制备出了具有多孔结构的煤基球形碳。通过X射线衍射(XRD)、扫描电镜(SEM)、拉曼光谱(Raman)、氮气吸脱附法和恒电流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明, 在100 mA/g的电流密度下, 煤基球形多孔碳的首次放电比容量可达到1188.9 mAh/g, 远高于商业石墨负极372 mAh/g的理论比容量。此外, 该材料还表现出了良好的循环稳定性, 经历200圈循环后的放电比容量为844.9 mAh/g。煤基球形多孔碳优异的电化学性能得益于活化过程所产生的分级孔道结构能为锂离子提供更多储存空间, 从而提高了电极的容量及循环稳定性。  相似文献   

17.
通过真空驱动自组装法及蒸汽处理得到结构疏松的硅/碳纳米管/石墨烯自支撑负极材料(Si/CNTs/GP)。纳米硅颗粒(50 nm)为活性物质, 均匀分布在石墨烯片层结构中间; 石墨烯作为碳基体, 通过自组装构筑形成二维导电网络; 碳纳米管(CNTs)具有超高导电性和良好的力学强度, 它通过吸附作用均匀分布在石墨烯基体上形成导电的支撑网络结构。经过蒸汽处理后, 石墨烯层间距明显增大, 层与层之间不再是紧密堆叠的结构, 而是形成一种疏松、褶皱、内部空隙丰富的片层结构。Si/CNTs/GP负极材料中丰富的内部空穴和贯穿孔洞, 提供了材料很高的比表面积, 能有效提高电解液对材料的浸润性, 极大缩短了离子传输距离。同时这些内部空穴也有效缓冲硅充放电时的体积膨胀, 提高了材料的结构稳定性和电化学性能。该负极材料在4 A/g的大电流密度下容量维持在600 mAh/g, 表现出良好的大电流循环稳定性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号