首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
锂硫电池被认为是新一代低成本、高能量密度的储能系统。但由于硫正极导电性差、穿梭效应严重以及氧化还原反应速率慢, 导致电池容量衰减严重, 倍率性能较差。本研究以柠檬酸钠为碳源制备了具有三维中空结构的多孔碳材料, 并在其骨架上负载钴纳米颗粒后作为硫正极的载体。引入的钴纳米颗粒可有效吸附多硫化物, 提升其转化反应的动力学, 进而明显改善电池的循环和倍率性能。所得的钴掺杂复合硫正极在0.5C (1C=1672 mAh·g-1)的倍率下首圈放电比容量高达1280 mAh·g-1, 在1C的倍率下稳定循环200圈后可保持770 mAh·g-1, 并且具有优异的倍率性能, 即使在10C的大电流密度下仍可稳定循环。  相似文献   

2.
以聚丙烯酰胺(PAM)作为分散剂, 采用液相控制结晶-碳热还原法制备LiFePO4/C正极材料, 考察了PAM对LiFePO4/C正极材料性能的影响, 采用热化学分析、X射线衍射、扫描电镜、碳含量分析和充放电测试等分析测试手段对材料进行表征。结果表明, 将PAM溶于酸液中且添加量为1.5wt%时制备的LiFePO4平均粒径约为100 nm, 颗粒分散较为均匀; 该材料在0.1C、1C、2C、5C和10C倍率下首次放电比容量分别为153.8、142.5、138.4、128.7和124.3 mAh/g, 1C倍率下循环100次后容量保持率仍在99%以上; 交流阻抗分析表明: 1.5wt%PAM改性后的材料的各种阻抗值均降低, 锂离子的导电速率提高了28倍。PAM改性后的LiFePO4/C正极材料的离子及电子导电性提高了, 具有优良的倍率性能与循环性能, 有利于大规模推广应用。  相似文献   

3.
锂硫电池作为极具潜力的下一代二次电池受到广泛关注。然而, 对于含硫正极的研究仍处于实验探索阶段, 商业化的碳纤维毡应用于硫正极鲜有报道。本研究制备了锂硫电池用碳纤维支撑柔性碳硫复合电极, 并对其进行了物性及电池性能的研究。结果发现, 碳纤维毡具有多孔隙的三维网络结构, 与具有微孔结构的多孔碳共同构成正极支撑体, 能够物理固定正极材料, 有助于提高电池的能量密度和锂硫正极的导电性, 界面电阻由原来的97.9 Ω降到22.6 Ω。进一步研究表明, 碳纤维毡做集流体的样品在首圈0.05C倍率下, 具有996.7 mAh/g的放电比容量, 在2C高倍率下循环140圈后仍保持666.7 mAh/g的放电比容量, 而铝箔样品仅为772.9和471.6 mAh/g。同时, 本研究使用的LA132水系粘结剂、super-P导电剂价格低廉, 球磨制备工艺可规模化生产、安全环保, 可以为锂硫电池工业化生产和应用提供参考。  相似文献   

4.
超高镍正极材料具有高比能、高电压和低成本等特点, 在新一代锂离子电池中备受关注, 但在电池的长循环过程中会出现微裂纹、机械粉化和不可逆相变, 导致差的循环性能。本研究采用简便的湿化学法制备了一系列Ca3(PO4)2包覆的超高镍LiNi0.91Co0.06Al0.03O2材料(NCA@nCP)。其中, NCA@1CP在1C (1C=200 mA/g)、2.7~4.3 V下可获得204.8 mAh/g的放电比容量, 100圈循环后容量保持率为91.5%, 甚至在2C的倍率下循环300圈后仍保留153.4 mAh/g的放电比容量。表征结果证实该包覆层可抑制材料的Li/Ni混排、不可逆相变和机械粉化, 从而大幅提升了循环稳定性。本研究表明Ca3(PO4)2包覆策略在提升超高镍正极材料储锂稳定性方面具有较大的应用潜力。  相似文献   

5.
高镍正极材料由于较高的比容量和性价比而受到关注, 但在循环过程中稳定性较差且安全性能不佳, 限制了其更广泛的应用。本研究结合微波辅助共沉淀与高温固相法制备高镍正极LiNi0.8Mn0.2O2二元材料, 再掺入不同比例的Co、Al对材料进行改性研究。结果表明, 改性后的材料性能明显改善, 特别是LiNi0.8Mn0.1Co0.08Al0.02O2在2.75~4.35 V、1C下循环100次后容量保持率达到91.39%, 在5C下放电比容量仍有160.03 mAh∙g-1, 并且掺杂后的材料具有较高的热稳定性, 安全性得到提升。其优异的循环保持率归因于Co、Al较好地抑制了循环过程中H2→H3相变的不可逆性对材料结构稳定性的破坏, 以及较弱的电极反应极化, 使电荷转移电阻降低。  相似文献   

6.
以蛋白石页岩为载硫体, 通过化学沉积法制备蛋白石页岩/硫复合材料, 再利用化学氧化聚合法在其表面包覆一层聚苯胺, 制备出一种新型的蛋白石页岩/硫-聚苯胺复合材料, 作为锂硫电池的正极材料。SEM、TEM和BET等测试结果表明蛋白石页岩呈层状多孔结构, 小尺寸硫在材料内分布均匀,聚苯胺包覆的厚度约为400 nm。电化学性能测试表明, 蛋白石页岩/硫-聚苯胺正极活化后放电比容量最高达到1164.93 mAh/g, 在0.5C (1.0C=1675 mA/g)倍率下, 循环300次后放电比容量为539.30 mAh/g, 库伦效率始终保持在95%以上, 说明蛋白石页岩具有良好的吸附性, 同时导电聚苯胺包覆层具有双效固硫的作用, 有利于吸附多硫化物和抑制穿梭效应。  相似文献   

7.
当前制约钠离子电池发展的主要因素包括较低的能量/功率密度和较差的循环性能, 而在正极材料表面包覆含氧缺陷金属氧化物层, 可以有效提高材料的电子导电率, 保证高振实密度、能量密度和功率密度。本文通过温和的溶剂热反应制备Na3V2(PO4)2F3纳米片前驱体并结合高温煅烧合成Na3V2(PO4)2F3@V2O5-x复合材料。其结构通过XRD、TEM、SEM、XPS和TGA测试进行表征。作为钠离子电池的正极材料, 展现了优异的循环性能和倍率性能。在0.2C倍率下, 首圈放电比容量为123 mAh?g -1, 循环140圈后容量保持在109 mAh?g -1。当电流密度提高至1C, 首圈放电比容量达到72 mAh?g -1, 充放电循环500圈后, 容量保持率高达84%。优异的电化学性能归因于材料表面包覆的具有丰富结构缺陷的无定型层, 有效提高了离子的扩散和电子导电率。此方法将有助于钠离子电池的实际应用。  相似文献   

8.
以蔗糖为碳源, 以草酸为抗氧化剂, 采用溶剂热、球磨和固相烧结相结合的方法制备了LiMn0.6Fe0.4PO4/C正极材料, 并通过改变烧结温度得到了不同形貌结构的目标产物。以金属锂片为对电极, 组装成锂离子半电池, 探究其电化学性能。研究结果表明, 当烧结温度为650℃时, 该材料表现出优异的电化学性能, 在0.2C(1C=170 mA/g)的电流密度下, 起始容量为119.1 mAh/g, 循环80次之后, 容量上升到148.8 mAh/g, 并且该材料在大电流密度下也表现出优异的循环稳定性。  相似文献   

9.
以喷雾热解法制备出了能量密度高, 电化学性能优异的LiCr0.2Ni0.4Mn1.4O4正极材料。采用热重分析、X射线衍射、扫描电镜、循环伏安、交流阻抗等手段进行了测试与表征, 并且在现有市售高电压电解液耐受条件下, 对不同截止电压(3.6~5.0 V, 3.6~5.2 V)的电化学特性做了详细的研究。结果表明: 此法所得材料峰形尖锐结晶良好, 且无杂质相生成, 粒度分布较为均一, 为微米-亚微米级颗粒。在5.2 V充电截止电压下, 0.5C倍率下首次放电容量高达142.9 mAh/g, 且0.5C及1C下二者的能量密度均在600 Wh/kg以上。当截止电压为5.2 V, 放电深度增大, 低倍率比容量提高, 但大倍率容量, 循环稳定性及放电电压工作平台下降均较为明显。  相似文献   

10.
以Ce(OH)4为原料, 采用热分解法制备得到粒径小于10 nm的CeO2纳米晶。制备得到的CeO2纳米晶表面存在丰富的羟基和硝基, 作为硫正极添加剂, 一方面可以有效吸附硫和多硫化锂, 抑制多硫化锂在电解液中的溶解和穿梭效应的发生, 进而提高电池的循环性能。同时, 可以改善电极和电解液之间的接触性, 提高活性物质利用率。其中, 含有5wt%的CeO2纳米晶的锂硫电池在0.1C和0.5C(1C=1675 mA/g)的充放电倍率下, 100周之后放电比容量分别达750 mAh/g和598 mAh/g, 远高于不含有CeO2纳米晶的523 mAh/g和395 mAh/g, 同时, 循环前后的电池阻抗也明显降低。  相似文献   

11.
以1-甲基萘热溴化/脱溴聚合沥青为前驱体, 中孔二氧化硅SBA-15为模板, 采用液相浸渍法合成有序中孔炭。通过不同测试手段对中孔炭的微观结构和电化学性能进行了研究。当模板剂和沥青质量比为1:1, 升温速率为 1 ℃·min-1, 碳化温度为900 ℃时, 所制备的中孔炭性能最优, 具有高度有序的二维六方孔道结构, 比表面积为675 m2·g-1, 孔容为1 cm3·g-1, 孔径集中在3.84 nm左右。该中孔炭用于Li-S电池的正极载体材料表现出良好的电化学性能, 在0.2C(1C=1675 mA·g-1)电流密度下经300次循环后放电比容量和容量保持率分别为688 mAh·g-1和67.1%, 在3C电流密度下比容量可达556 mAh·g-1。  相似文献   

12.
改善尖晶石锰酸锂的大倍率性能是目前锂离子电池的重点研究方向之一。本研究用高温固相法合成掺K+的尖晶石锰酸锂, 研究K+提高锰酸锂倍率性能的微观机制。结果表明, 尽管随着电流密度增大, 电极的放电比容量下降, 但掺K+提高材料的大倍率性能效果显著, 如最佳掺K+量(物质的量分数)1.0%时, 在10C (1C=150 mA·g-1)下比容量提高了一倍, 远高于0.5C下的1.9%。原因在于掺K+后, 首先, 锰酸锂的晶胞体积扩大, Li-O键变长, Li、Mn阳离子混排程度降低, 载流子(Mn3+)量增多; 其次, 电极极化和电荷迁移阻抗降低, 提高了材料的充放电可逆性、导电性及锂离子扩散能力; 再者, [Mn2]O4骨架更稳定, 减小了电化学过程中内应力变化, 抑制了晶体结构变化和颗粒破碎; 最后, 钾离子掺杂使制备过程中材料团聚, 从而减小电解液与电极的接触面积, 减轻电解液的侵蚀, 抑制锰的溶解。  相似文献   

13.
采用水热法合成高质量的Fe4[Fe(CN)6]3(HQ-FeHCF)纳米材料, 并对材料进行X射线衍射(XRD), 扫描电子显微镜(SEM), 透射电子显微镜(TEM)和热重分析测试(TGA)等表征。结果表明:Fe4[Fe(CN)6]3呈规则立方体, 颗粒大小约500 nm, 属面心立方结构。Fe4[Fe(CN)6]3在NaClO4-H2O-聚乙二醇电解液中1C、2C、5C、10C、20C、30C和40C的容量分别为124、118、105、94、83、74和64 mAh·g -1, 表现出优异的倍率性能; 以5C倍率循环500次, 容量保持率接近100%, 表现出极佳的循环稳定性。以Fe4[Fe(CN)6]3和磷酸钛钠分别为正负极的全电池工作电压高达1.9 V, 能量密度可达126 Wh·kg -1; 以5C倍率恒流充放电测试140次后全电池容量保持率为92%, 且库伦效率始终接近100%。  相似文献   

14.
以荷叶为原料, 采用多阶炭化的方法, 得到高比表面积(572.1 m2/g)和存在大量多级孔尤其微孔(平均孔径3.31 nm)结构居多的炭骨架, 继而用高能球磨法及熔融法与单质硫进行复合制备出不同含硫量(48wt%, 62wt%, 71wt%)碳/硫复合材料。通过XRD、FESEM、EDS和TG对材料结构和形貌进行表征, 结果表明硫被均匀固定在多孔碳材料的类石墨烯层状结构和类微米棒结构中。充放电测试表明, 62wt%含硫量的复合正极材料性能表现最佳, 在0.1C, 1.2~2.8 V范围内充放电, 首次放电比容量达1246 mAh/g, 100次循环后依旧保持在600 mAh/g, 制备出的复合正极材料对多硫化物的“穿梭效应”起到了抑制作用。  相似文献   

15.
锂离子电池已广泛应用于各种便携式电子设备及新能源汽车等领域, 但随着电子设备的不断更新换代及电动汽车的快速发展, 理论比容量较低的传统石墨负极(372 mAh/g)已无法满足社会的需求。基于此, 本工作设计并制备了一种Zn基金属有机物框架(ZIF-8)衍生的三维网络状硅碳(Si@NC)复合材料用于锂离子电池性能研究。首先对纳米硅表面进行化学改性,然后在改性的硅表面原位生长ZIF-8小颗粒(Si@ZIF-8), 最后对Si@ZIF-8碳化得到Si@NC复合材料。研究表明, Si@NC复合材料的三维网络状多孔结构既可以很好地限制硅的体积膨胀, 又能极大地提升材料的电导率, 展现出稳定的循环性能和良好的倍率性能, 在5 A/g的大电流下能保持760 mAh/g的放电比容量。与商业三元正极材料组装的全电池也表现出较好的性能, 在0.4C (1C =160 mA/g)下循环50圈依然可以保持60.4%的比容量。这些研究结果说明该Si@NC复合材料具有较好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号