首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
Catalytic decomposition of methane (CDM) for COx-free hydrogen production is carried out over 20 wt% Ni supported on H-ZSM-5/MCM-41 composite material, synthesized from alkaline desilication of a conventional H-ZSM-5(Si/Al = 40) and surfactant-recrystallization process. The composite material is used, for the first time, as support of Ni-catalyst in CDM. Tested for 6 h at 620 °C under atmospheric pressure, the 20 wt% Ni/H-ZSM-5/MCM-41 exhibits relatively higher H2 production rate than 20 wt% Ni supported on the parent H-ZSM-5(Si/Al = 40) or on the pure MCM-41 in the order H-ZSM-5/MCM-41 > H-ZSM-5 > MCM-41. All catalysts display a remarkable catalytic stability. The higher catalytic activity of Ni/composite could be related to an improvement in both the access to active Ni metal atoms and the dispersion of the latter as evidenced by H2-chemisorption measurement. The fresh catalysts are characterized by several techniques while the reacted ones are studied by the Raman spectroscopy.  相似文献   

2.
For the first time, simultaneous production of hydrogen and nanocarbon via catalytic decomposition of methane over Ni-loaded mesoporous Ce-MCM-41 catalysts was investigated. The catalytic performance of the Ni/Ce-MCM-41 catalysts is very stable and the reaction activity remained almost unchanged during 1400 min steam on time at temperatures 540, 560 and 580 °C, respectively. The methane conversion level over these catalysts reached 60–75% with a 100% selectivity towards hydrogen. TEM observations revealed that most of the Ni particles located on the tip of the carbon nanofibers/nanotubes in the used catalysts, keeping their exposed surface clean during the test and thus remaining active for continuous reaction without obvious deactivation. Two kinds of carbon materials, graphitic carbon (Cg) as major and amorphous carbon (CA) as minor were produced in the reaction, as confirmed by XRD analysis and TEM observations. Carbon nanofibers/nanotubes had an average diameter of approximately 30–50 nm and tens micrometers in length, depending on the reaction temperature, reaction time and Ni particle diameter. Four types of carbon nanofibers/nanotubes were detected and their formations greatly depend on the reaction temperature, time on steam and degree of the interaction between the metallic Ni and support. The respective mechanisms of the formation of nanocarbons were postulated and discussed.  相似文献   

3.
A series of Ce-incorporated SBA-15 mesoporous materials were synthesized through direct hydrothermal synthesis method and further impregnated with 12 wt.% Ni. The samples were characterized by ICP-AES, XRD, N2 physisorption, XPS, TPR, H2 chemisorption, TGA, temperature-programmed hydrogenation (TPH) and TEM measurements. The low-angle XRD and N2 physisorption results showed the Ce successfully incorporated into the framework of SBA-15. The catalytic properties of these catalysts were investigated in methane reforming with CO2. The Ce/Si molar ratio had a significant influence on the catalytic performance. The highest catalytic activity and long-term stability were obtained over the Ni/Ce-SBA-15 (Ce/Si = 0.04) sample. The improved catalytic behavior could be attributed to the cerium impact in the framework of SBA-15, where cerium promoted the dispersion of nano-sized Ni species and inhibited the carbon formation. In comparison with the effect of CeO2 crystallites in SBA-15, cerium in the framework of SBA-15 promoted the formation of the nickel metallic particles with smaller size. The XRD and TGA results exhibited that carbon deposition was responsible for activity loss of Ni/SBA-15 and Ni/Ce-SBA-15 (Ce/Si = 0.06) catalysts. TEM results showed that the hexagonal mesopores of SBA-15 were still kept intact after reaction and the pore walls of SBA-15 prevented the aggregation of nickel.  相似文献   

4.
Hydrogen production by steam reforming of ethanol (SRE) was studied using steam-to-ethanol ratio of 3:1, between the temperature range of 150–450 °C over metal and metal oxide nanoparticle catalysts (Ni, Co, Pt and Rh) supported on carbon nanotubes (CNTs) and compared to a commercial catalyst (Ni/Al2O3). The aim was to find out the suitability of CNTs supports with metal nanoparticles for the SRE reactions at low temperatures. The idea to develop CNT-based catalysts that have high selectivity for H2 is one of the driving forces for this study. The catalytic performance was evaluated in terms of ethanol conversion, product gas composition, hydrogen yield and selectivity to hydrogen. The Co/CNT and Ni/CNT catalysts were found to have the highest activity and selectivity towards hydrogen formation among the catalysts studied. Almost complete ethanol conversion is achieved over the Ni/CNT catalyst at 400 °C. The highest hydrogen yield of 2.5 is, however, obtained over the Co/CNT catalyst at 450 °C. The formation of CO and CH4 was very low over the Co/CNT catalyst compared to all the other tested catalysts. The Pt and Rh CNT-based catalysts were found to have low activity and selectivity in the SRE reaction. Hydrogen production via steam reforming of ethanol at low temperatures using especially Co/CNT catalyst has thus potential in the future in e.g. the fuel cell applications.  相似文献   

5.
In this study, Ruthenium incorporated SiO2 type nanocomposite catalysts were prepared for COx free hydrogen production by using one-pot hydrothermal synthesis procedure. Experiments which were carried out under the flow of pure ammonia (300 ml/min) presented that 86% ammonia conversion was obtained at 500 °C over the catalyst having Ru/Si molar ratio of 0.060. Using promoter in the preparation of catalyst enhanced the catalytic activity especially for the ones prepared at low ruthenium loadings. While the catalyst that was prepared at a Ru/Si molar ratio of 0.010 without promoter gave negligible activity at 500 °C, the promoted one gave 33% conversion at 500 °C and 73% at 600 °C. Experiments were also repeated with lower feed flow rate values of ammonia such as 60 ml/min and 5 ml/min. It was seen that catalyst prepared at a Ru/Si molar ratio of 0.010 with promoter gave conversion value over 80% at 400 °C under the feed flow rate of 5 ml/min.  相似文献   

6.
Different Pt-Carbon catalysts have been synthesized by hard templating route and have been employed for production of hydrogen from liquid phase HI decomposition at 160 °C temperature. The physical properties and catalytic activities of these catalysts are compared with that of the platinum on activated carbon catalysts. These catalysts have been characterised by X-Ray diffraction, Raman, SEM and BET surface area. Eluant analysis has been carried out using ICP-OES for evaluation of the extent of noble metal leaching under the catalytic activity test conditions. From the present study we have concluded that MCM-41 based Pt/carbon has higher catalytic activity and stability than other Pt/carbon catalysts.  相似文献   

7.
A series of CdS/M(x)-MCM-41 (M = Zr, Ti, x stands for molar ratio of M/Si) photocatalysts were preprared by hydrotherm, ion-exchange and sulfidation process. The catalysts were characterized by X-ray diffraction, UV-vis spectra and N2 adsorption-desorption isotherm et al. The characterization results shown that Zr or Ti was successfully doped into the mesoporous of MCM-41, and CdS was also successfully incorporated into such modified mesoporous. The results of photocatalytic performance for hydrogen production shown that CdS/Zr(0.005)-MCM-41 and CdS/Ti(0.02)-MCM-41 had the highest hydrogen evolution activity in triethanolamine aqueous solution under visible light (λ > 430 nm) irradiation, which can be explained by the diffusion velocity of the reactants and resultants and the protection which MCM-41 provided for CdS.  相似文献   

8.
In present work, the aim of producing biodiesel from waste cooking oil was pursued by doping the cerium element into the MCM‐41 framework as catalyst with various Si/Ce molar ratio (5, 10, 25, 50, and Ce = 0). The catalytic performance and stability improved by employing the ultrasound irradiation in active phase loading step of catalyst preparation. The physicochemical characteristics of synthesized samples were investigated using various techniques as follows: Brunauer‐Emmett‐Teller (BET), X‐ray powder diffraction (XRD), Fourier transfer infrared (FTIR), energy‐dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), and field emission scanning electron microscope (FESEM). The XRD patterns along with the results of FTIR and BET analysis revealed the MCM‐41 framework destruction while increasing the Ce content. The FESEM images of the nanocatalysts illustrated a well distribution and uniform morphology for the Ca/CeM (Si/Ce = 25). The particle size and size distribution of the Ca/CeM (Si/Ce = 25) were subsequently determined by TEM and FESEM images. The activity of fabricated nanocatalysts was evaluated by measuring the free acid methyl ester (FAME) content of produced biodiesel. The tests were carried out at constant operational conditions: T = 60°C, catalyst loading = 5 wt%, methanol/oil molar ratio = 9, and 6‐hour reaction time. A superior activity was observed for Ca/CeM (Si/Ce = 25) among other nanocatalysts with 96.8% conversion of triglycerides to biodiesel. The mentioned sample was utilized in five reaction cycles, and at the end of the fifth cycle, the conversion reached to 91.5% which demonstrated its significant stability.  相似文献   

9.
Steam reforming of ethanol is a promising route for the production of high purity hydrogen. Ni impregnated zirconia, with high chemical and thermal stability and high water adsorption-dissociation capability is an attractive catalyst for this reaction. In the present study, mesoporous zirconia and high surface area zirconia/silicate structured materials, such as Zr-SBA-15 and Zr-MCM-41, were synthesized following hydrothermal routes, using different surfactants as the structure directing templates. Surface area values of Ni impregnated mesoporous Zr-SBA-15 and Zr-MCM-41 catalysts with molar Zr/Si ratios of 0.13 and 0.45 were 515 and 338 m2/g, respectively. Ethanol reforming tests performed with these catalysts, in the temperature range of 550–650 °C, proved the potential of these materials to achieve very high hydrogen yields, over 90% of the maximum yield value of 6 mol per mole of ethanol reacted. Type of support material, Ni distribution and cluster size over the catalyst, reaction temperature and steam to ethanol ratio were found to have strong influence on coke formation and stability of hydrogen yield.  相似文献   

10.
The catalytic activity of Pt and PtNi catalysts supported on γ-Al2O3 modified by La and Ce oxides was investigated in the steam reforming of ethanol/glycerol mixtures. In general, all the catalysts fully converted the glycerol at the temperatures tested. However, the conversion of ethanol depended on the reaction temperature and catalyst type. The conversion into gaseous products operating at 500 °C and 450 °C was 100% using the most active catalysts (PtNiAl6La and PtNiAl10Ce). These two bimetallic catalysts gave H2 yields close to those predicted by thermodynamic equilibrium at these temperatures. However, when the reaction temperature was lowered to 400 °C, these catalytic systems and the PtNiAl one recorded a significant decrease in ethanol conversion and H2 yield, which moved away from the thermodynamic equilibrium value. This deviation was due to intermediate liquid products (acetaldehyde, acrolein, etc.) not being further reformed and the formation of other gaseous ones (light alkanes and ethylene). PtNiAl10Ce catalyst presented the highest conversion into gas at 400 °C, resulting in the largest H2 yield, followed by PtNiAl6La and PtNiAl catalysts. This order is in agreement with the Ni/Al surface atomic ratio measured by XPS technique in reduced samples. However, filamentous carbon nanotubes were detected but this carbon type maintained the active sites accessible for reactants, since TEM and TGA results showed that the density of this carbon was lower for PtNiAl10Ce catalyst. Pt catalysts presented lower activity than PtNi catalysts possibly due to the formation of carbon nanotubes, which covered some metallic active sites.  相似文献   

11.
Mesoporous silica supported cobalt boride (Co–B) catalysts are rationally designed for hydrogen generation in ammonia–borane hydrolysis reactions under ambient conditions. Cobalt boride catalysts are supported on three different mesoporous silica, including beta-zeolite seeded MCM-41 (Co@M41S) and traditional MCM-41 (Co@M41T) via chemical adsorption onto functionalized surface with 3-trihydroxysilylpropylmethylphosphonate (THPMP), and one-step co-precipitation into mesoporous silica framework (Co@M41C). Our preparation strategies provide two insights to the reactions: first, cobalt oxide species are intrinsically deposited as ultra-small nanoparticles (<2 nm) on mesoporous silica supports; subsequently the nanoparticles are converted to active Co–B catalysts by reduction with sodium borohydride (SB). Three catalysts exhibit significant differences in catalytic reactivities with hydrogen production rates ranked in an order of Co@M41S > Co@M41T > Co@M41C. Detailed analysis of the coordination environments from in situ X-ray absorption spectroscopy (XAS) results confirm reducibility in SB. Amorphous nature of Co–B catalysts are responsible for efficient catalytic activity in Co@M41S and Co@M41T. Ammonia temperature programmed desorption (NH3-TPD) demonstrates support acidity that correlates to the degree of high dispersity and effective reducibility to Co–B. Effects from catalyst sizes, reducibility in SB treatment and surface acidity are studied in detail to compare catalytic reactivities among three types of supports.  相似文献   

12.
Nickel incorporated MCM-41-like mesoporous materials, which were synthesized following a one-pot hydrothermal route, were promoted by Ru and Mg in order to improve their catalytic performances for dry reforming of methane. In this study, Ni-MCM-41 based catalysts (with a Ni/Si molar ratio of 0.2), containing different amounts of Ru (0.5-3.0 wt%) and Mg (1 and 5 wt%) were prepared by using sequential impregnation of Ru and Mg into Ni-MCM-41. Dry reforming of methane was studied in a tubular flow reactor in the temperature range of 500-600 °C with different CH4/CO2 ratios in the feed stream. Quite high hydrogen yield values and improved stability of these catalysts indicated the promoting effects of Ru for the Ni-MCM-41 type catalysts. Ru incorporation (1.0% Ru) was shown to improve H2 yields. Mg impregnation into 1.0Ru@Ni-MCM-41 improved catalytic performance by increasing CH4 conversion and decreasing the contribution of reverse water gas shift reaction, especially at initial times (first 60 min). Coke formation by decomposition of CH4 contributed to the hydrogen selectivity, but did not cause significant change in catalytic performance, especially at longer reaction times.  相似文献   

13.
The performance of gallium promoted cobalt-ceria catalysts for ethanol steam reforming (ESR) was studied using H2O/C2H5OH = 6/1 mol/mol at 500 °C. The catalysts were synthetized via cerium-gallium co-precipitation and wetness impregnation of cobalt. A detailed characterization by N2-physisorption, XRD, H2-TPR and TEM allowed the normalization of contact time and rationalization of the role of each catalysts component for ESR. The gallium promoted catalyst, Co/Ce90Ga10Ox, was more efficient for the ethanol conversion to H2 and CO2, and the production of oxygenated by-products (such as, acetaldehyde and acetone) than Co/CeO2. The catalytic performance is explained assuming that: (i) bare ceria is able to dehydrogenate ethanol to ethylene; (ii) Ce–O–Ga interface catalyzes ethanol reforming; (iii) both Ce–O–Co and Ce–O–Ga interfaces takes part in acetone production; and (iv) cobalt sites further allow C–C scission. It is suggested that a cooperative role between Co and Ce–O–Ga sites enhance the H2 and CO2 yields under ESR conditions.  相似文献   

14.
Co/MgAl2O4 catalysts modified with La, Pr or Ce were prepared, characterized by different techniques and tested in ethanol steam reforming reaction to produce hydrogen. The catalytic behavior at 650 °C depended on the nature of rare earth. The amount of carbon on promoted catalysts was significantly lower than that on unpromoted one. The Pr and La containing catalysts produced a high acetaldehyde selectivity which decreased the hydrogen production. The superior performance of the catalyst promoted with 7.8% Ce could be partially explained by a higher dispersion and a high reduction of Co species.  相似文献   

15.
Hydrocalumite derived nickel (Ni) catalysts with different loading of magnesium (Mg) (7.5/10/15 wt%, as promoters) were for the first time prepared and tested for ethanol steam reforming (ESR) in this work. The catalytic performances of different Mg promoted catalysts were mainly evaluated in the temperature range between 550 and 700 °C as determined by thermodynamic simulation. Experimental results showed that the optimal reaction temperature was 650 °C in terms of the hydrogen yields for these ESR catalysts, especially for 15Ni7.5Mg/HCa which presented a remarkable catalytic performance. Its hydrogen yields reached 90% while ethanol was almost fully converted at 650 °C. Based on the characterization results, it's believed that 15Ni7.5Mg/HCa with a certain amount of Mg loading can get the smallest Ni0 crystallite sizes, better H2 reducibility and suitable basicities on strong basic sites. The catalytic performances of ESR catalysts were mainly related to the Ni0 crystallite size, reducibility and basicity for the prepared hydrocalumites derived Ni catalysts, and 15Ni7.5Mg/HCa could be considered as one of the best catalysts for ESR.  相似文献   

16.
A series of Co–Ce/Sepiolite (SEP) catalysts were prepared by surfactant-assisted coprecipitation route and subsequently evaluated for hydrogen production from ethanol steam reforming. The effects of the types and quantities of surfactants such as Cetyltrimethyl Ammonium Bromide (CTAB) and Polyvinyl Pyrrolidone (PVP) on catalysts microstructures were investigated by means of N2 adsorption-desorption, XRD, H2-TPR, Raman, XPS, SEM, and TEM. The results demonstrated that the function of surfactants complexation with Co/Ce precursors enlarged the metal interparticle distance, led to the surface enrichment of Co/Ce atoms and provoked diverse Co–Ce interfaces, which could both enhance the reforming behavior and restrain the amorphous coke during reaction. Meanwhile, the optimal complexation effect of CTAB on Co–Ce/SEP-C0.4 (CTAB:Mδ+ = 0.4) gave it superior reducibility, surface content of Co/Ce atoms and relative abundance of oxygen vacancies. Consequently, Co–Ce/SEP-C0.4 presented the best ethanol conversion (96.2%), hydrogen yield (77.9%) and the uppermost catalytic stability (100 h) during ESR reaction. In addition, the scatter modes of surface Co/Ce particles and forms of Co–Ce interfaces significantly depended on surfactant types.  相似文献   

17.
The efficacies of attapulgite clay (ATC)-, titanium dioxide (TiO2)- and silica gel (SG)-supported cobalt–cerium–boron (Co–Ce–B) substances as catalysts were investigated for the alcoholysis and hydrolysis of sodium borohydride (NaBH4) in ethanol–water solutions. Ce served as a helpful co-catalyst among the prepared Co–Ce–B catalysts, and the catalytic activity decreased in the following sequence: TiO2-supported > ATC-supported > SG-supported > unsupported. The effects of Ce/(Co+Ce) molar ratio, ethanol concentration, reaction temperature, NaBH4 concentration and NaOH concentration on the hydrogen production rate were investigated. For the ATC-supported catalyst, when the Ce/(Co+Ce) molar ratio was 10%, the catalyst exhibited the best catalytic activity. Optimal NaBH4 concentration, NaOH concentration and ethanol concentration to promote hydrogen generation rate was around 8 wt.%, 15 wt.% and 30 wt.%, respectively. It can be found that the addition of ATC greatly improved the recycle ability of the catalysts in the multi-cycle tests. The surface morphology of the catalysts before and after the recycle tests was studied from SEM images. The compositions of the catalysts were determined by XRD and EDS analyses. The occurrence of NaB(OH)4 in the alcoholysis by-product provided pertinent indications of ethanol recovery after the tests. The value of activation energy in the hydrogen generation process in the presence of ATC-supported Co–Ce–B catalyst was calculated to be 29.51 kJ/mol. An overall kinetic equation was also proposed.  相似文献   

18.
Pure hydrogen and carbon nanotubes were produced via thermo-catalytic decomposition (TCD) of methane over Ni-loaded MCM-22 catalysts in a vertical fixed-bed reactor. The effect of reaction temperature, gas hourly space velocity (GHSV), Cu/Zn promoter and time on stream on the methane conversion, hydrogen and carbon yields were studied over the synthesized catalysts. The catalytic performance of the 50%Ni–5%Cu–5%Zn/MCM-22 catalyst was found to be highly stable compared to other catalysts. The highest conversion of methane over 50%Ni–5%Cu–5%Zn/MCM-22 catalyst reached 85% with 947% carbon yield. Methane conversion increased on increasing the reaction temperature up to 750 °C and decreased thereafter at higher temperatures. XRD and TEM analysis of the carbon byproduct revealed that graphitic carbon appeared as a major crystalline phase during the reaction. HRTEM results revealed that most of the Ni particles were located on the tip of the carbon nanofibers/nanotubes formed on the spent catalysts. The carbon nanofibres have an average outer diameter of approximately 20–40 nm with an average length of 450–500 nm. Four types of carbon nanofibers were detected and their formation strongly depended on the reaction temperature, time on stream and degree of the interaction between the metallic Ni particle and support. The optimum conditions for CNT production within the experimental ranges were found at a reaction temperature of 750 °C.  相似文献   

19.
The wet impregnation method was used to prepare different ruthenium promoted Ce–Al catalysts. These catalysts were used in the steam reforming of methanol reaction (SRM). The effects of the reaction temperature (200–400 C) and the catalyst composition were studied for optimization reasons. The steam to methanol molar ratio was kept constant (S/M = 2). The promotion of cerium/aluminum oxides with Ru enhanced their catalytic activity. The catalytic test results showed that the Ru/Ce combination was the most beneficial. The synergy between Ru and cerium oxide led to the formation of active sites with excellent redox properties. For high active phase content, the 5 RuCe catalyst exhibited the highest hydrogen production amount with no CO formation. This catalyst was kept under stream for 5 days at 400 C, and no significant deactivation was observed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Ethanol steam reforming (ESR) is one of the most promising reliable and recyclable technologies for hydrogen production. However, the development of robust, efficient Ni-based catalysts that minimize metal sintering and carbon deposition remains a key challenge. The influence of cobalt loading and ESR conditions on H2 selectivity and catalytic stability is the focus of this study. Ni–Co/Al2O3 catalysts with various Co percentages were prepared by the co-impregnation method and complementary characterization tests were performed. Among the catalysts tested, Ni–Co/Al2O3 (5 wt% Co) exhibited the smallest metal crystallite size, the highest surface area, and the best catalytic performance. Thereafter, the effects of temperature, LHSV and S:C molar ratio were studied. 100% ethanol conversion and maximum H2 selectivity (95.14%) were reached at 600 °C, 0.05 L/gcat.h and S:C molar ratio of 12:1. Furthermore, ethanol turnover frequency (TOF) was computed for each catalyst. TOF results showed that the Ni–Co interaction had an impact on the catalytic activity. Finally, Ni2CoAl was subjected to 50-h stability test and only 6.12 mgcarbon/gcat.h coke deposition was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号