首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 540 毫秒
1.
This article presents simple method for the OMC-6%Ni-6%Co (ordered mesoporous carbon containing Ni and Co metallic nanoparticles) catalyst synthesis with high surface area and more proper bimetallic nanoparticle dispersion; prepared successfully by soft template hydrothermal method and different zirconium loadings (0.5, 1, 2 wt %) accomplished by impregnation method, which was known as a desired method for the metal dispersion. The catalysts with/without promoter, were characterized by XRD, FTIR and N2 adsorption-desorption isotherms, FESEM, EDS, EDS mapping, HRTEM and TPR techniques and investigated in steam reforming of ethanol (SRE) at 250–400 °C. XRD and BET results indicated that zirconium addition more than 0.5% wt, decreased the average mesopore diameter of catalysts, total pore volume and particles size. Also, it was stated that Ni2+ and Co2+ were caught by the RF/F127 network and further reduced into metallic Ni and Co nanoparticles during the carbonization. The Ni and Co nanoparticles were well-dispersed in the OMC walls. FTIR spectroscopy revealed that F127 left the structure and formed the porous structure. TPR analysis of OMC-6%Ni-6%Co/2%Zr sample, indicated that the sample is reduced easily at low temperatures. FESEM and HRTEM images showed that carbon was precipitated in the CNT form on spent catalyst samples surfaces and confirmed the position of Ni and Co bimetallic nanoparticles on the CNTs tip in the OMC-6%Ni-6%Co/2%Zr sample. 2% Zr-promoted bimetallic catalyst revealed appropriate catalytic performance for SRE, such as high activity, hydrogen yield and proper stability due to the synergistic catalysis of cobalt and nickel. Also, effective factors, such as H2O/EtOH molar ratio and gas hourly space velocity (GHSV) were investigated on the OMC-6%Ni-6%Co/2%Zr catalyst sample.  相似文献   

2.
The Co/CeO2 catalysts obtained by co-precipitation method were used in the steam reforming of ethanol (SRE). The influence of cobalt active phase content (15–29 wt%), the reaction temperature (420–600 °C) and H2O/EtOH molar ratio (12/1 and 6/1) were examined. The physicochemical characterization revealed that the cobalt content of the catalyst influences the metal-support interaction which results in catalyst performance in SRE process. The differences between catalytic properties of the Co/CeO2 catalysts with different metal loading in SRE process decayed at 500 °C for H2O/EtOH = 12/1. The best performance among the tested catalysts showed the 29Co/CeO2 catalyst with the highest cobalt content, exhibiting the highest ethanol conversion, selectivity to two most desirable products and the lowest selectivity to by-products in comparison with catalysts containing smaller amount of metal. Its catalytic properties results probably from its unique physicochemical properties, i.e this catalyst contains large amount of cobalt but the metal crystallites are relatively small. Regardless cobalt content, an increase in the water-to-ethanol molar ratio in the feed increased the concentration of hydrogen an carbon dioxide and decreased formation of carbon monoxide, acetone, aldehyde and ethylene.  相似文献   

3.
Ceria-supported Pt, Ir and Co catalysts are prepared herein by the deposition–precipitation method and investigated for their suitability in the steam reforming of ethanol (SRE) at a temperature range of 250–500 °C. SRE is tested in a fixed-bed reactor under an H2O/EtOH molar ratio of 13 and 20,000 h−1 GHSV. Possible pathways are proposed according to the assigned temperature window to understand the different catalysts attributed to specific reaction pathways. The Pt/CeO2 catalyst shows the best carbon–carbon bond-breaking ability and the lowest complete ethanol conversion temperature of 300 °C. Acetone steam reforming over the Ir/CeO2 catalyst at 400 °C promotes a hydrogen yield of up to 5.3. Lower reaction temperatures for the water–gas shift and acetone steam reforming are in evidence for the Co/CeO2 catalyst, whereas the carbon deposition causes its deactivation at temperature over 500 °C.  相似文献   

4.
Hydrogen is an ideal energy carrier and can play a very important role in the energy system. The present study investigated the enhancement of hydrogen production from catalytic dry reforming process. Two catalysts namely Ni/γ-Al2O3 and Co/γ-Al2O3 promoted with different amounts of strontium were used to explore selectivity and yield of hydrogen production. Spent and fresh catalysts were characterized using techniques such as BET, XRD, H2-TPR, CO2-TPD, TGA and O2-TPO. The catalyst activity and characterization results displayed stability improvement due to addition of Sr promoter. The least coke formations i.e. 3.8 wt% and 5.1 wt% were obtained using 0.75 wt% Sr doped in Ni/γ-Al2O3 and 0.5 wt% Sr doped in Co/γ-Al2O3 catalysts respectively. Time on stream tests of promoted catalysts for about six hours at 700 °C showed stable hydrogen selectivity. Moreover, the hydrogen selectivity was significantly improved by the addition of Sr in Ni and Co based catalysts. For instance the hydrogen selectivity increased from 45.9% to 47.8% for Ni/γ-Al2O3 and from 48% to 50.9% for Co/γ-Al2O3 catalyst by the addition of 0.75 wt% Sr in Ni/γ-Al2O3 and 0.5 wt% Sr in Co/γ-Al2O3 catalyst respectively.  相似文献   

5.
Oxidative steam reforming of ethanol (OSRE) was studied over Rh/CeO2/Al2O3 catalysts in a micro-channel reactor. First, the catalyst support, Al2O3, was deposited on to the metallic substrate by washcoating and then the CeO2 and active metal were sequentially impregnated. The effect of support composition as well as active metal composition on oxidative steam reforming of ethanol in a micro-channel reactor was studied at atmospheric pressure, with water to ethanol molar ratio of 6 and oxygen to ethanol molar ratio ranging from 0.5 to 1.5, over a temperature range of 350-550 °C. Ceria added to 1%Rh/Al2O3 showed higher activity and selectivity than 1%Rh/Al2O3 alone. Out of the various catalysts tested, 2%Rh/20%CeO2/Al2O3 performed well in terms of activity, selectivity and stability. The OSRE performance was compared with that of SRE over 2%Rh/20%CeO2/Al2O3 catalyst at identical operating conditions. Compared to SRE, the activity in OSRE was higher; however the selectivity to desired products was slightly lower. The H2 yield obtained in OSRE was ∼112 m3 kg−1 h−1, as compared to ∼128 m3 kg−1 h−1 in SRE. The stability test performed on 2%Rh/20%CeO2/Al2O3 at 500 °C for OSRE showed that the catalyst was stable for ∼40 h and then started to deactivate slowly. The comparison between packed bed reactor and micro-channel reactor showed that the micro-channel reactor can be used for OSRE to produce hydrogen without any diffusional effects in the catalyst layer.  相似文献   

6.
Nanoscale Co and Ni catalysts in silica were synthesized using sol–gel method for hydrogen production from steam reforming of methanol (SRM) in silicon microreactors with 50 μm channels. Silica sol–gel support with porous structure gives specific surface area of 452.35 m2 g−1 for Ni/SiO2 and 337.72 m2 g−1 for Co/SiO2. TEM images show the particles size of Ni and Co catalysts to be <10 nm. The EDX results indicate Co and Ni loadings of 5–6 wt.% in silica which is lower than the intended loading of 12 wt.%. The DTA and XRD data suggest that 450 °C is an optimum temperature for catalyst calcination when most of the metal hydroxides are converted to metal oxides without significant particle aggregation to form larger crystallites. SRM reactions show 53% methanol conversion with 74% hydrogen selectivity at 5 μL min−1 and 200 °C for Ni/SiO2 catalyst, which is higher than that for Co/SiO2. The activity of the metal catalysts decrease significantly after SRM reactions over 10 h, and it is consistent with the magnetization (VSM) results indicating that ∼90% of Co and ∼85% of Ni become non-ferromagnetic after 10 h.  相似文献   

7.
Ethanol steam reforming is a promising reaction which produces hydrogen from bio and synthetic ethanol. In this study, the nano-structured Ni-based bimetallic supported catalysts containing Cu, Co and Mg were synthesized through impregnation method and characterized by XRD, BET, SEM, TPR and TPD analysis. The prepared catalysts were tested in steam reforming of ethanol in the S/C = 6, GHSV of 20,000 mL/(gcat h) at the temperature range of 450–600 °C. Among the xNi/CeO2 (x = 10, 13, 15 wt%) catalyst, the sample containing 13 wt% Ni with surface area of 64 m2/g showed the best performance with 89% ethanol conversion and 71% H2 selectivity as well as low CO selectivity of 8% at 600 °C and The addition of Cu, Mg, and Co to catalyst structure were evaluated and it was found that the nature of second metal has a strong influence on the catalyst selectivity for H2 production. Considering to results of TPR analysis, the 13Ni–4Cu/CeO2 catalyst showed proper reduction which caused in better activity. On the other side based on TPD analysis, the more basic property of 13Ni–4Mg/CeO2 bimetallic catalyst provided a better condition to methane steam reforming, leading to lower CH4 selectivity and consequently more H2 production. The 13Ni–4Cu/CeO2 exhibited the highest activity and lowest selectivity towards ethanol conversion and CO production about 99% and 4%, while the 13Ni–4Mg/CeO2 catalyst possessed the highest H2 selectivity and lowest CH4 selectivity about 74% and 1% respectively at 600 °C. The Ni–Cu and Ni–Mg bimetallic catalysts shows good stability with time on stream.  相似文献   

8.
Six different types of catalysts (nickel, iron, and cobalt each supported by γ-Al2O3 and activated carbon) that were prepared via impregnation were used to produce hydrogen (H2) and carbon nanotubes (CNTs) from the pyrolytic product of waste tyres. A two-stage pyrolytic-catalytic reactor was constructed, in which the waste tyre was pyrolyzed in the first pyrolysis reactor, and the resultant pyrolysis vapors underwent the reforming and upgrading step in the downstream catalytic reactor. The results showed that the interaction between the active metal and its support had a remarkable effect on the production of H2 and CNTs. Compared with the series of γ-Al2O3 supported catalysts, all the activated carbon-supported catalysts showed higher H2 yields and better CNTs quality. For the same catalyst support (γ-Al2O3 or activated carbon), the higher yield of H2 and better quality of CNTs were obtained by the Ni catalysts, followed by the Fe catalysts and the Co catalysts. Among all the catalysts, Ni supported by activated carbon exhibited the best catalytic performance, producing the highest hydrogen yield (59.55 vol.%) and the best CNT quality. Further investigation about the influence of CH4 and naphthalene as the carbon source on generated CNTs revealed that CH4 led to longer CNT length and higher graphitization than naphthalene.  相似文献   

9.
Ethanol steam reforming (ESR) is one of the most promising reliable and recyclable technologies for hydrogen production. However, the development of robust, efficient Ni-based catalysts that minimize metal sintering and carbon deposition remains a key challenge. The influence of cobalt loading and ESR conditions on H2 selectivity and catalytic stability is the focus of this study. Ni–Co/Al2O3 catalysts with various Co percentages were prepared by the co-impregnation method and complementary characterization tests were performed. Among the catalysts tested, Ni–Co/Al2O3 (5 wt% Co) exhibited the smallest metal crystallite size, the highest surface area, and the best catalytic performance. Thereafter, the effects of temperature, LHSV and S:C molar ratio were studied. 100% ethanol conversion and maximum H2 selectivity (95.14%) were reached at 600 °C, 0.05 L/gcat.h and S:C molar ratio of 12:1. Furthermore, ethanol turnover frequency (TOF) was computed for each catalyst. TOF results showed that the Ni–Co interaction had an impact on the catalytic activity. Finally, Ni2CoAl was subjected to 50-h stability test and only 6.12 mgcarbon/gcat.h coke deposition was observed.  相似文献   

10.
The catalytic performance of Co/Al2O3 catalysts promoted with small amounts noble metals (Pt, Pd, Ru, Ir) for steam reforming of ethanol (SRE) has been investigated. The catalysts were characterized by the energy dispersive X-ray, X-ray diffraction, BET surface area, X-ray absorption fine structure and temperature reduction programmed techniques. The results showed that the promoting effect of noble metals included a marked decrease of the reduction temperatures of both Co3O4 and cobalt surface species interacting with the support due to the hydrogen spillover effect, leading to a significant increase of the reducibilities of the promoted catalysts. The better catalytic performance for the ethanol steam reforming at 400 °C was obtained for the CoRu/Al2O3 catalyst, which presented an effluent gaseous mixture with the highest H2 selectivity and the reasonable low CO formation.  相似文献   

11.
Auto-thermal reforming (ATR) of bio-ethanol is a promising process for hydrogen production, which can lead to the possibility of directly using low concentration ethanol from fermentation plants without going through the energy-consuming distillation and dehydration processes, saving both energy and cost. Co-based catalysts are active for hydrogen production in ATR, where the hydrogen yield and stability are important factors to be considered. To address the concerns of selectivity and deactivation, iron was introduced into Co-based catalysts via wet-impregnation. The catalysts were characterized with TPR, XRD, XPS, and Raman spectra, and tested in ATR of ethanol. The XPS, XRD, and TPR results show that with iron-promotion, more Co metal is obtained over the catalyst surface, which remains stable during the oxidative atmosphere of ATR. Meanwhile, iron promotes the ethanol dehydrogenation pathway in ATR reactions. This synergic effect contributes to the higher activity and stability of Co-based catalysts in the ATR process: A higher hydrogen yield remains around 3.13 mol H2/mol EtOH at 600 °C and stays stable in a 30-h test.  相似文献   

12.
The activity toward hydrogen production in steam reforming of ethanol (SRE) reaction has been evaluated for CuO/ZrO2 catalysts doped with Mn, Ni, Ga at 350 °C. The copper based catalysts were synthesised by co-precipitation method at constant pH = 7 and fixed (wt.%) CuO/ZrO = 2.3. The catalysts were characterised by means of N2 adsorption, temperature programmed reduction (H2-TPR), N2O dissociative chemisorption, X-ray diffraction (XRD), CO2 temperature programmed desorption (CO2-TPD), and temperature programmed oxidation (TPO). It has been found that copper based catalysts exhibit high ethanol conversion in SRE (>86%) at 350 °C. Due to basic character of catalysts, the formation of acetaldehyde is observed. The CuO/ZrO2 catalyst modification with dopants increases the hydrogen yield with maximum (52%) for CuO/ZrO2/NiO. The addition of Ni changes the distribution of carbon-containing products. In this case, the increase in selectivity to CO, CO2 and CH4 is observed whereas selectivity to acetaldehyde is significantly decreased. This shows that presence of Ni facilities the C–C bond cleavage. On the other hand, the formation of acetic acid is limited upon addition of Mn and Ga. For all modified catalysts, decrease in carbon deposition rate during SRE is pronounced according to TPO experiments. The modification of Cu/Zr with Mn, Ni and Ga causes the decrease in copper particle size, which hinders the carbon deposit formation.  相似文献   

13.
A LaNiO3 perovskite catalyst was prepared using the coprecipitation–oxidation hydrothermal method, followed by calcination at 600 °C for 2 h. The as-prepared sample was composed of La(OH)3 in nanorod structures and was covered with poorly crystalline Ni(OH)2. The mixed metal hydroxides were converted into cubic LaNiO3 perovskite after calcination at 600 °C. A catalytic steam reforming of ethanol (SRE) reaction for hydrogen production was performed in a fixed-bed reactor. The catalyst was reduced in situ in hydrogen at 400 °C prior to the reaction. The ethanol conversion reached 100% at 300 °C with 70% hydrogen selectivity. The highly catalytic activity of the reduced catalyst was due to the well-dispersion of Ni particles on the surface of active catalyst was formed in the in situ reduced catalyst. After a 80 h time-on-stream test at 350 °C, the used catalyst presented a La2O2CO3 component that was formed owing to the reaction of the CO2 product with La2O3. La2O2CO3 acted as a carbon reservoir to eliminate the deposited carbon and further stabilized the Ni particles on the La2O3 surface, which resulted in the highly catalytic activity during the entire reaction period. The deposited carbon after the SRE reaction was further examined by TGA, TPR, elemental analysis, and TEM.  相似文献   

14.
Ni and Co catalysts supported on ITQ-6 zeolite have been synthesized and evaluated in the steam reforming of ethanol (SRE). Catalysts were also characterized by means of N2 adsorption-desorption, XRD, H2-TPR, and H2-chemisorption. ITQ-6 containing Co (Co/ITQ-6) presented a higher conversion of ethanol and production of hydrogen than ITQ-6 containing Ni (Ni/ITQ-6). The lower size of the metallic cobalt particles shown in Co/ITQ-6 seems to be the major responsible of its higher catalytic performance. Regarding the reaction by-products (CO, CH4, C2H4O and CO2), Co/ITQ-6 showed the lowest selectivity at medium and high temperatures (773 and 873 K). At low reaction temperatures (673 K) the dehydrogenation reaction predominates in the Co/ITQ-6, what it is supported by the high concentration of acetaldehyde detected at this temperature. In the case of the Ni/ITQ-6 the main side reaction at 673 K seems to be the methanation reaction since large concentrations of methane are detected. Stability studies were also carried out showing lower deactivation of Co/ITQ-6 at large reaction times (24 h). Characterization of the exhausted catalysts after reaction showed the presence of coke in both catalysts. Nevertheless, Co/ITQ-6 presented the lowest coke deposition. In addition, Co/ITQ-6 exhibited the lowest metal sinterization, what could be also account for the lower deactivation exhibited by this sample. This fact could be related to the higher interaction between the cobalt metallic particles and the ITQ-6 support as the H2-TPR studies demonstrate.  相似文献   

15.
The electrochemical activities of three bimetallic Pt–M (M = Fe, Co, and Ni) catalysts in methanol oxidation have been investigated. An efficient approach including chemical oxidation of carbon nanotubes (CNTs), two-step refluxing, and subsequent hydrogen reduction was used to thoroughly disperse bimetallic nanopartilces on the oxidized CNTs. Three catalysts with a similar Pt:M atomic ratio, Pt–Fe (75:25), Pt–Co (75:25), and Pt–Ni (72:28), were prepared for the investigation of methanol oxidation. The Pt–M nanoparticles with an average size of 5–10 nm are uniform and cover the surface of CNTs. Cyclic voltammetry showed that the three pairs of catalysts were electrochemically active in the methanol oxidation. On the basis of the experimental results, the Pt–Co/CNT catalyst has better electrochemical activity, antipoisoning ability, and long-term cycleability than the other electrocatalysts, which can be justified by the bifunctional mechanism of bimetallic catalysts. The satisfactory results shed some light on how the use of Pt–Co/CNT composite could be a promising electrocatalyst for high-performance direct methanol fuel cell applications.  相似文献   

16.
Catalytic steam reforming of ethanol is considered as a promising technology for producing H2 in the modern world. In this study, using a fixed‐bed reactor, steam reforming of ethanol was performed for production of carbon nanotubes (CNTs) and H2 simultaneously at 600°C on Ni/CaO catalysts. Commercial CaO and a synthetic CaO prepared using sol‐gel were scrutinized for ethanol's catalytic steam reforming. Analysis results of N2 isothermal adsorption indicate that the CaO synthesized by sol‐gel has more pore volume and surface area in comparison with the commercial CaO. When Ni was loaded, the Ni/CaO catalyst shows an encouraging catalytic property for H2 production, and an increase in Ni loading could improve H2 production. The Ni/CaO catalyst with sol‐gel CaO support has presented a higher hydrogen production and better catalytic stability than the catalysts with the commercial CaO support at low Ni loading. The highest hydrogen yield is 76.8% at Ni loading content of 10% for the Ni/sol‐gel CaO catalyst with WHSV of 3.32/h and S/C ratio of 3. The carbon formed after steam reforming primarily consists of filamentous carbons and amorphous carbons, and CNTs are the predominant type of carbon deposition. The deposited extent of carbon on the used Ni/CaO catalyst lessen upon more Ni loading, and the elongated CNTs are desired to be formed at the surface of the Ni/sol‐gel CaO catalyst. Thus, an efficient process and improved economic value is associated with prompt hydrogen production and CNTs from ethanol steam reforming.  相似文献   

17.
Mesoporous yttria-stabilized zirconia (YSZ-X) supports with different Y/Zr molar ratio (X) were prepared by a sol–gel method. 20 wt% Ni catalysts supported on YSZ-X (X = 0, 0.1, 0.2, and 0.3) were then prepared by an incipient wetness impregnation method for use in hydrogen production by auto-thermal reforming of ethanol. The effect of Y/Zr molar ratio (X) on the catalytic performance of Ni/YSZ-X (X = 0, 0.1, 0.2, and 0.3) catalysts was investigated. Hydrogen selectivity and by-product distributions over the catalysts were different depending on the Y/Zr molar ratio (X). Hydrogen selectivity over Ni/YSZ-X (X = 0, 0.1, 0.2, and 0.3) catalysts showed a volcano-shaped curve with respect to Y/Zr molar ratio (X). Among the catalysts tested, Ni/YSZ-0.1 showed the best catalytic performance and the lowest carbon deposition in hydrogen production by auto-thermal reforming of ethanol. High reducibility and excellent structural stability of Ni/YSZ-0.1 catalyst were responsible for its superior catalytic performance.  相似文献   

18.
Partial oxidation of bio-ethanol over Co- and Ni-based catalysts supported on Al2O3, ZnO and AlZn binary mixed oxide was studied in a temperature range between 300 and 600 °C. Substantial difference in catalytic behavior of the materials was related to variation in metal dispersion and to metal-support interaction realized on different supports. Hence, the state of active metallic phase and reducibility of the catalysts were investigated. Among the presented systems, Ni supported on AlZn mixed oxide prepared by sol–gel method afforded the most active catalyst producing a H2 and CO rich fuel gas. It is proposed that ZnAl2O4 spinel phase determines the reaction pathway and Ni promote the hydrogen generation. High hydrogen selectivity of around 90% at complete ethanol conversion was achieved at 600 °C, whereas CO, CO2 and insignificant amounts of CH4 were the only carbon-containing products. This high catalytic performance combined with the low cost metals and the supports used in this study makes the materials prepared herein attractive as candidates for hydrogen generation by catalytic partial oxidation of bio-ethanol.  相似文献   

19.
Hydrogen production from water electrolysis with catalysts is a simple, effective, and environmentally friendly way. However, the slow kinetics of the oxygen evolution reaction (OER) directly affects the catalytic efficiency of water electrolysis during hydrogen production. While the high cost of noble metal catalysts limits their engineering applications. Therefore, there is an urgent need to develop an economical and abundant catalyst with efficient OER performance to replace noble metal catalysts to reduce costs. In this work, we propose a method for the preparation of composite catalytic electrodes by magnetically induced jet electrodeposition. Ni–Co–CeO2/Ni composite electrodes with a unique micro-nano structure and a large specific surface area were rapidly obtained through magnetically induced adsorption of nano-mixed particles. It was found that the Ni–Co–CeO2/Ni composite electrode deposited by magnetically induced electrodeposition exhibited a lower overpotential of 301 mV@10 mA/cm2 when the nano-mixed particle concentration was 2 g/L, and the corresponding Tafel slope was as low as 43.72 mV/dec. The key parameters of overpotential and Tafel slope reach or even outperform the best noble metal electrode in the industry, indicating that the Ni–Co–CeO2/Ni composite electrode had excellent OER catalytic performance. The study demonstrates that magnetically induced jet electrodeposition provides a new method for the preparation of catalytic electrodes, which has important applications in the electrolysis of water for hydrogen production.  相似文献   

20.
This study is focused on investigating the dual performance of Rh/CeO2/γ-Al2O3 catalyst for steam reforming of ethanol (SRE) and thermochemical water splitting (TCWS) using a packed bed reactor. The catalyst is designed to be thermally stable containing an active phase of Rh and the redox component of CeO2 for oxygen exchange, supported on γ-Al2O3. The catalyst has been characterised by SEM, XRD, BET, TPR, TPD, XPS and TGA before testing in the reactor. The optimal temperature for SRE reaction over this catalyst is between 700 °C and 800 °C to produce high concentrations of hydrogen (~60%), and low CO and CH4. The selectivity towards CO and CH4 is higher at low temperatures and drops with rise in reaction temperature. Further, Rh/CeO2/γ-Al2O3 is found to be active for TCWS at relatively low temperatures (≤1200 °C). At temperatures as low as 800 °C, this catalyst is especially found suitable for multiple redox cycles, producing a total of 48.9 mmol/gcat in four redox cycles. The catalyst can be employed for large number of redox cycles when the reactor is operated at lower temperatures. Finally, the reaction pathways have been proposed for both SRE and TCWS on Rh/CeO2/γ-Al2O3 catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号