首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strontium plays important physicochemical and biological roles in the applications of bone repair materials. The available methods of Sr doping in bone cements were believed to make a key effect on the biodegradation and Sr ion release behaviors of cements. In this work, Sr‐doped octacalcium phosphate (Sr‐OCP), Sr‐doped α‐tricalcium phosphate (Sr‐α‐TCP), SrCO3, and SrCl2 with different actual availability of Sr2+ were imported into α‐TCP bone cements, and their effects on the biodegradation and ions release of cements were comparatively investigated. Incorporation of different Sr carriers had led to distinct hydration morphologies, crystal evolutions, degradation rates, and microenvironments of bone cements during their in vitro biodegradation. Compared with other Sr carriers, Sr‐OCP facilitated the hydration reaction of α‐TCP, which induced the enhanced degradation and Sr ion release behaviors. In conclusion, Sr‐OCP was supposed to be a more potential Sr carrier applied in the synthesis of biodegradable Sr‐doped calcium phosphate bone cements.  相似文献   

2.
《Ceramics International》2017,43(18):16196-16203
Rheology of bioceramic bone cements is usually described as properties of ceramic slurries, neglecting the self-setting character of these materials. In our studies calcium sulphate based bone cements with Ag+, Mg2+ and Mg2+/CO32- modified hydroxyapatite were investigated. Despite of expectations, it has been proven that the presence of magnesium ions significantly influence the rheological properties of cement pastes. Changes in rheological properties were connected with (I) chemical interactions between Mg2+ and sulphate ions (II) chemical interaction between Mg2+ and chitosan. These effects were not observed for silver additive. Most of the developed calcium sulphate based pastes, except material containing MgHA and chitosan, have been categorized as thick pastes applicable with the spatula. It has been found that the chitosan present around and at the calcium sulphate grains acted as a lubricant and prolong the period of quasi-constant viscosity of the pastes.  相似文献   

3.
Calcium phosphate cements (CPCs) are ideally suited for the local delivery of antibiotics in infected bone defects as they have multiple binding sites for loading various drugs. CPCs can also be substituted with ions such as Ag+, Zn2+, Mg2+, Sr2+, etc., to exhibit extended broad-spectrum antimicrobial activity. Strontium (Sr) in particular is known to enhance the new bone formation and decrease bone resorption. The current work aims to develop a dual action tetracalcium phosphate (TTCP) based cement which releases both the Sr2+ ion and ornidazole antibiotic drug for the treatment of bone infections. The TTCP with Sr2+ ion substitution was prepared by the solid state reaction method and it was used to form ornidazole loaded CPC. The ornidazole loaded cement prepared using 8?at% Sr substituted TTCP (8SCPC-O) showed complete hydroxyapatite (HA) formation in phosphate buffered solution at the end of 1 week. Fine needle-shaped HA crystals were observed in 8SCPC-O cement. In vitro drug release studies showed an accelerated ornidazole release from the 8SCPC-O sample when compared to samples without Sr substitution. Ornidazole releasing cements were found to be biocompatible with skeletal myoblast (L6) cells. Antibacterial activity of ornidazole releasing cement was evident from day 1 onwards against E. coli. The above results suggest 8SCPC-O as a good candidate for treating local bone infections.  相似文献   

4.
β-tricalcium phosphate (β-TCP, β-Ca3(PO4)2) is an attractive biomaterial for bone repair applications. However, its sintering and mechanical properties are limited by a problematic phase transition to α-TCP. Cationic doping of β-TCP is able to postpone the formation of α-TCP allowing higher sintering temperatures and better mechanical properties. The co-doping of β-TCP with Mg2+ and Sr2+ has already been studied in detail, but the addition of antibacterial cations (Ag+ and Cu2+) on the Mg–Sr β-TCP co-doped composition remains unexplored. Thus, two co-doped β-TCP compositions were realized by aqueous precipitation technique without any secondary phase and compared with undoped β-TCP: Mg–Sr (2.0–2.0 mol%) and Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1 mol%). Differential thermal analysis and dilatometry analyses showed a slight decrease of the β-TCP → α-TCP phase transition temperature for the Mg–Sr–Ag–Cu (2.0–2.0–0.1–0.1% mol) composition as compared to the Mg–Sr (2.0–2.0 mol%). However, both exhibited much higher transition temperatures than undoped β-TCP. The addition of Ag+ and Cu2+ slightly reduces the grain size after sintering compared to the Mg–Sr (2.0–2.0 mol%) and the undoped compositions. The co-doped compositions also exhibited improved mechanical properties, specifically a higher Vickers hardness and elastic modulus. Finally, cell proliferation assays showed that the presence of dopants, even Ag+ and Cu2+, does not affect the survival and proliferation of cells. Thus, the use of Mg2+, Sr2+, Ag+, and Cu2+ co-doped β-TCP could be very promising for biomedical applications due to the improvements of these dopants on the thermal stability and mechanical and biological properties.  相似文献   

5.
Sr‐mayenite (S12A7) incorporating Cl? ions in its crystallographic cages up to the theoretical maximum occupancy, Sr12Al14O32Cl2, is reported in our study. The addition of a stoichiometric amount of SrCl2 to the starting mixture is effective for the formation of Sr12Al14O32Cl2 with high phase purity. Almost 100% densification is achieved using spark plasma sintering (SPS). Evaporation of SrCl2 from Sr12Al14O32Cl2, which becomes significant at sintering temperatures above ~1300°C, degrades the phase purity. However, SrCl2 effusion is significantly suppressed in the samples fully densified by SPS, impeding the decomposition of Sr12Al14O32Cl2 up to temperature as high as ~1400°C. The crystal structure of Sr12Al14O32Cl2 was investigated by Rietveld analysis of the X‐ray diffraction pattern. It is found that the Cl? ion is incorporated in the center of the inner cage with nearly theoretical maximum occupancy, which is responsible for the phase stability. Porous Sr12Al14O32Cl2 exhibits humidity‐sensitive surface protonic conductivity. Dense Sr12Al14O32Cl2 prepared under reducing conditions such as SPS exhibits electronic conductivity. Sr‐mayenite has various potential applications derived from its multifunctionalities.  相似文献   

6.
Sr9Mg1.5(PO4)7:Eu2+ has recently been reported as a promising blue light-excited orange–yellow phosphor that can be used in white LED device. Here, Ce3+-codoping is found to be an effective strategy to improve the luminescence performance of Sr9Mg1.5(PO4)7:Eu2+ phosphor. The coexistence of Eu2+ and Eu3+ ions has been verified via photoluminescence spectral analysis. The reduction of Eu3+ to Eu2+ in Sr9Mg1.5(PO4)7 lattice cannot be completed in a reducing atmosphere, but can be promoted through codoping with Ce3+ ions to a great extent, which finally increase the effective concentration of Eu2+ in the crystal lattice. The Eu3+−Eu2+ reduction mechanism is analyzed using a charge compensation model. This work not only achieves enhanced luminescence of the Sr9Mg1.5(PO4)7:Eu2+ phosphor by codoping with Ce3+ ions, but also provides new insights into the design of Ce3+/Eu2+ codoped luminescent materials.  相似文献   

7.
In order to develop new bioactive calcium phosphate (CaP) materials to repair bone defects, it is important to ensure these materials more closely mimic the non-stoichiometric nature of biological hydroxyapatite (HA). Typically, biological HA combines various CaP phases with different impurity ions, which substitute within the HA lattice, including strontium (Sr2+), zinc (Zn2+), magnesium (Mg2+), carbonate (CO32-) and fluoride (F-), but to name a few. In addition to this biological HA have dimensions in the nanometre (nm) range, usually 60?nm in length by 5–20?nm wide. Both the effects of ion substitution and the nano-size crystals are seen as important factors for enhancing their potential biofunctionality. The driving hypothesis was to successfully synthesise nanoscale hydroxyapatite (nHA), co-substituted with strontium (Sr2+) and zinc (Zn2+) ions in varying concentrations using an aqueous precipitation method and to understand their chemical and physical properties. The materials were characterised using Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM) techniques. The FTIR, XRD and XPS results confirmed that the nHA was successfully co-substituted with Sr2+ and Zn2+, replacing Ca2+ within the nHA lattice at varying concentrations. The FTIR results confirmed that all of the samples were carbonated, with a significant loss of hydroxylation as a consequence of the incorporation of Sr2+ and Zn2+ into the nHA lattice. The TEM results showed that each sample produced was nano-sized, with the Sr/Zn-10%nHA having the smallest sized crystals approximately 17.6 ± 3.3?nm long and 10.2 ± 1.4?nm wide. None of the materials synthesised here in this study contained any other impurity CaP phases. Therefore, this study has shown that co-substituted nHA can be prepared, and that the degree of substitution (and the substituting ion) can have a profound effect on the attendant materials’ properties.  相似文献   

8.
In order to improve some features of bone substitutes the new self-setting composite-type implant material based on Mg2+/CO32? co-substituted hydroxyapatite (Mg-CHA) and calcium sulfate hemihydrate (CSH) was developed. Synthetic hydroxyapatites doped with small amounts of additives found in natural bone (e.g. Mg2+ and CO32?) are regarded as promising components of calcium phosphate bone cements (CPCs). The CPCs, now available on the market, due to low resorption rate are too stable to permit material degradation and are slowly replaced by the newly formed bone. To improve cement resorption we used calcium sulfate which is a well-known biodegradable and biocompatible bone defect filler. Combining properties of Mg-CHA and CSH allowed developing a new, promising, easy shapeable implant material with high potential for bone regeneration.  相似文献   

9.
《分离科学与技术》2012,47(1):72-80
Adsorption of Sr2+ onto kaolinite has been studied by means of a radiotracer technique using the 90Sr isotope. Bangham’s and McKay models have been applied to kinetic results in Sr2+ concentrations between trace ?0.1 mol.L?1. The magnitudes of film and intra-particle diffusion coefficients are 10?10 and 10?14 m2·s?1, respectively. Concentration dependence of diffusion coefficients indicated that Sr2+ ions are adsorbed on two different adsorption sites by an exothermic and spontaneous process. The Freundlich isotherm parameters and exchange equilibrium constants derived from selectivity coefficients indicate that Sr adsorption are depressed by competing cations in the order of Na+< Mg2+< Al3+.  相似文献   

10.
Hydration of partially amorphized α‐TCP powders with Sr2+ concentrations ranging from 0 to 10 mol% substitution for Ca2+ was analyzed by isothermal calorimetry and quantitative in‐situ XRD. Hydration of both crystalline α‐TCP and amorphous TCP (ATCP) forming CDHA was retarded to an increasing extent with increasing Sr2+ content. Sr2+ slightly reduced the crystallite size (XRD coherent scattering domains) of the CDHA formed during hydration, while the size of crystals visible under SEM was not noticeably affected. Reaction enthalpies of ΔHR(Sr‐α‐TCP→Sr‐CDHA) = 122 ± 8 J/gTCP and ΔHR(Sr‐ATCP→Sr‐CDHA) = 257 ± 8 J/gTCP were determined for the hydration of crystalline α‐TCP and ATCP containing 5 mol% Sr2+ substitution for Ca2+. This is comparable with the corresponding reaction enthalpies previously obtained for undoped samples, which are 106 ± 7 J/gTCP for α‐TCP and 250 ± 7 J/gTCP for ATCP.  相似文献   

11.
The adsorption isotherms of M2+ ions (M = Mg, Ca, Sr or Ba) were determined at pH 7.0 and at different temperatures. The adsorbent, δ-MnO2, was converted to the K+ form prior to adsorption and about 1.5 mol K+ ions were released per mol of M2+ ions adsorbed. The adsorption capacity at a given temperature increased in the series: Mg2+ < Ca2+ ≦ Sr2+ < Ba2+. This was explained by an ion exchange mechanism between hydrated ions: K+ ions in the outer Helmholtz layer and M2+ ions in the bulk of the solution. The radii of the hydrated ions decreased in the series: Mg2+ > Ca2+ > Sr2+ > Ba2+. The adsorption of M2+ ions at pH values below the point of zero charge (pH 3.3) was significant for Mg2+ ions only. Although adsorption was not strictly reversible, the results fitted the Langmuir isotherm and ‘apparent heats of adsorption’, Q, were calculated. The endothermic heats (Q = 20,18, 11 and 5 kJ mol?1 for Mg2+, Ca2+, Sr2+ and Ba2+ adsorption respectively) indicated positive entropy contributions which are expected for the adsorption mechanism suggested. The decrease in Q down the alkaline-earth group was correlated to the entropy effects and to the hydration numbers of the cations.  相似文献   

12.
《Ceramics International》2022,48(22):33143-33150
Bi3+ ions can regulate and control the fluorescence of a phosphor by transferring energy to the activating agent or occupying different luminescent centers, which is important for modifying phosphors and revealing fluorescence mechanisms. As a base material, Sr3Al2O5Cl2 has three types of Sr sites (Sr 1, Sr 2, and Sr 3) that may be occupied by Bi3+ ions (Sr2+ has a similar radius to Bi3+). Herein, we successfully synthesized a series of Sr3Al2O5Cl2:x%Bi3+ phosphors using the high-temperature solid-state method and determined a two-site-occupying emission mechanism. X-ray diffraction patterns indicated that the samples were synthesized well, and Rietveld refinement results provided their structural information. Photoluminescence spectra showed 490 nm (λex = 345 nm) and 556 nm (λex = 376 nm) emission peaks, which might arise from different luminescent centers. The concentration quenching study, peak separation analysis, fluorescence lifetime spectra, and diffuse reflection spectra indicated that the Bi3+ ions occupied two of the three Sr sites. Calculations of relative system energies and distortion index proved that the occupation only occurred in the Sr 1 and Sr 3 sites, and crystal splitting analysis determined that Sr 1 site generated 490 nm emission light and Sr 3 site generated 556 nm emission light. The charge compensator and flux were added to enhance the fluorescence intensity of the phosphor, and 5% K+ along with 1% BaF2 is the optimal dosage. Finally, the SrAlSiN3:Eu2+, BaMgAl10O17:Eu2+, and optimized Sr3Al2O5Cl2:5%Bi3+ phosphors were combined as a luminous layer and a warm-white light-emitting diode was realized; the color rendering indices were 84.3, 85.8, 86.4, and 86.2 under working currents of 20, 30, 40, and 50 mA, respectively.  相似文献   

13.
The aim of this work is to investigate the effect of divalent cations on the structure and electrical properties of Ce0.85La0.1D0.05O2-δ (D = Ca, Sr and Ba) oxygen ion conductors. The X-Ray structural analysis confirms the presence of CeDO3 minor phase in addition to cubic fluorite phase of ceria in Sr2+ and Ba2+ added compositions. The lattice parameter of the compositions significantly depends on the ionic radius of dopants and the presence of D2+ ions in ceria lattice. The Ca2+ added composition shows the highest free oxygen vacancy concentration due to its lowest association energy and complete dissolution of Ca2+ ions into ceria lattice. The dopant-vacancy association energy and grain interior conductivity changes with the ionic radii of the divalent dopants. The grain boundary capacitance depends on dielectric constant, grain size and grain boundary thickness. The grain boundary conductivity shows 46% over total conductivity for Sr2+ added composition. The presence of CeDO3 phase and space charge layer promotes the grain boundary resistances and affects the ion dynamics. Schematic models are proposed to understand the ion migration in grain boundaries. The scavenging effect is found to be highest in Sr2+ ions added composition. The defect structures, the presence of CeDO3 phase and electrical properties are correlated with each other.  相似文献   

14.
In this study, Sr2+, Ca2+, Zn2+, and Mg2+ ions act to tune the emission band to the blue-cyan region in BaxSryB2O5:Ce3+ (BSBO), BaxCazB2O5:Ce3+ (BCBO), BaxZnuB2O5:Ce3+ (BZBO), and BaxMgvB2O5:Ce3+ (BMBO) phosphors. A red shift occurs with the increase of Sr2+, Ca2+, Zn2+, and Mg2+ concentration, and a blue shift occurs when the concentrations of Sr2+, Ca2+, Zn2+, and Mg2+ exceed the critical value. The emission color can be tuned from deep blue (0.15, 0.12) to cyan (0.16, 0.27) upon 365 nm UV lamp excitation due to the crystal field splitting and centroid shifts. The excitation band shift to long wavelength by introducing ions, so that the synthesized phosphor can be better matched with the n-UV chip. The emission intensity slowly decreases with the temperature increasing. Therefore, the BMBO:Ce3+, BZBO:Ce3+, BCBO:Ce3+, and BSBO:Ce3+ phosphors with relatively good thermal stability were synthesized, which could have potential applications in the n-UV white LEDs.  相似文献   

15.
While the reddish‐orange emitting phosphors M2Si5N8:Eu2+(M = Ca, Sr) have been intensively investigated as potential materials for white‐light‐emitting diodes, in this study, optical energy storage properties of (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ (x = 0–1) solid solutions were tuned by cation substitution, which was commonly used to tune color point for improving w‐LEDs. Partial substitution of either Ca by Sr or Sr by Ca resulted in a redshifted Eu2+ emission which had a demarcation point at x = 0.5. Furthermore, the (Ca1?xSrx)2Si5N8: Eu2+, Tm3+ materials exhibited similar persistent‐ and photostimulated luminescence behaviors with a maximum intensity at about x = 0.2. Such optical energy storage characters of the samples were attributed to the more appropriate trap depths (322–333 K) and higher density of energy level traps indicated by the thermoluminescence analysis.  相似文献   

16.
Control of light‐induced electron generation is of vital importance for the application of caged phosphors. For Eu‐doped Ca11.94?xSrxAl14O33 caged phosphors, the suppressed effect of strontium doping on the light‐induced electrons is observed compared to the europium‐free Ca11.94?xSrxAl14O33 phosphors. In the presence of europium ions, Sr doping will promote the reduction of Eu3+ to Eu2+. The Rietveld refinement suggests that unit cell volumes of the Ca11.94?xSrxAl14O33:Eu0.06 samples are expanded when Ca2+ ions are replaced by Sr2+ ions. The absorption and FTIR transmittance spectra confirm that the competitive reaction of encaged O2? anions with H2 is suppressed. For the sample (x=0.48), the higher thermal activation energy (~0.40 eV) for luminescence quenching can be attributed to the more rigid framework structure after Sr doping. For Ca11.94?xSrxAl14O33:Eu0.06 phosphors, their emission colours are tuned from red to purple upon 254 nm excitation and from pink to blue under electron beam excitation through Sr substitution. The insight gained from this work may have a significant guiding to design new phosphors for LED and FEDs and novel nanocaged mutifunctional materials.  相似文献   

17.
Eu2+, Mn2+ doped Sr1.7Mg0.3SiO4 phosphors were prepared by high temperature solid-state reaction method. Their luminescence properties were studied. The emission spectra of Eu2+ singly doped Sr1.7Mg0.3SiO4 consist of a blue band (455 nm) and a green band (550 nm). The relative intensities of two emissions varied with Eu2+ concentration. Eu2+ and Mn2+ co-doped Sr1.7Mg0.3SiO4 phosphors emit three color lights and present whitish color. The blue (455 nm) and green (550 nm) emissions are attributed to the transitions of Eu2+, while the red (670 nm) emission is originated from the transition of Mn2+ ion. The results indicate the energy transfer from Eu2+ to Mn2+. The mechanism of the energy transfer is resonance-type energy transfer due to the spectral overlap between the emission of Eu2+and the absorption of Mn2+.  相似文献   

18.
Pure and Sr2+ doped ZnO crystallites were successfully synthesized via a microwave hydrothermal method using Zn(NO3)2·6H2O and Sr(NO3)2·6H2O as source materials. The phase and microstructure of the as-prepared Zn1−xSrxO crystallites were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ultraviolet–visible spectrum (UV–vis) and photochemical reaction instrument were used to analyze the photocatalytic properties of the particles. XRD results show that the diffraction peaks of the as-prepared Zn1−xSrxO crystallites shifted slightly toward lower 2θ angle with the increasing of Sr2+ doping concentration from 0% to 0.3%. The pure ZnO crystallites with lamellar structure are found transforming to a hexagonal columnar morphology with the increase of Sr2+ doping concentration. UV–vis analysis shows that the particles have a higher absorption in UV region with a slightly decreased of optical band (Eg) gap. The photocatalytic activity of Sr2+ doped ZnO crystallites was evaluated by the Rhodamine B (RhB) degradation in aqueous solution under visible-light irradiation. Compared with the pure ZnO particles, the photocatalytic properties of the Sr2+ doped ZnO crystallites are obviously improved. The photocatalysis experiment results demonstrate that the 0.1% Sr2+ doped ZnO exhibits the best photocatalytic activity for the degradation of Rhodamine B.  相似文献   

19.
《Ceramics International》2020,46(17):27352-27361
Lightweight, broadband microwave absorbing materials, with strong absorption capacities, are an urgent demand for practical applications. The microstructural and microwave absorption properties of LaFeO3 samples prepared by a sol-gel method using different amounts of Sr are investigated systematically. X-ray diffraction and Rietveld refinement studies showed that Sr2+ doping can distort the crystal structure of LaFeO3, leading to lattice expansion and spin tilt of the Fe-O-Fe bond angle. The improvement of magnetic properties mainly originates from the synergistic effect of the bond angle spin tilt and crystal structure defects. Oxygen vacancies will be generated due to the fluctuations in the valence state of Fe3+ resulting from the substitution of La3+ by Sr2+ as deduced from the X-ray photoelectron spectroscopy analysis. The generation of oxygen vacancies, electronic hopping and polarization loss may be one of the main reasons for changes in the electromagnetic parameters. The minimum reflection loss (RL) of La1–xSrxFeO3 nanoparticles with the Sr doping of 0.2 can reach approximately -39.3 dB at 10 GHz for the thickness of 2.2 mm, and the effective absorption bandwidth (RL ≤ -10 dB) can reach approximately 2.56 GHz. In addition, the La1–xSrxFeO3 nanoparticles also can obtain better microwave absorbing performance in the C-band (4–8 GHz) with the minimum RL of -36.8 dB for the matching thickness of 3.0 mm and Sr content of 0.3. Consequently, La1–xSrxFeO3 nanoparticles are promising materials for use in a high-performance and adjustable electromagnetic wave absorber, particularly in C-band and X-band.  相似文献   

20.
《Ceramics International》2021,47(21):30129-30136
We have prepared (Sr1-xMgx)(Sn0.5Ti0.5)O3, (X = 0.00, 0.25, 0.50, 0.75) samples by the solid state reaction method and studied the structural, optical, electrical modulus and the other dielectric properties of the samples with respect to variation in frequencies (1 × 109 to 2 × 109 Hz) using Impedance Analyzer. This study suggests that the XRD patterns of the samples have shown that this possesses cubic perovskite structure in space group Pm-3m and scanning electron microscope was used to analyze the grain size distribution and porosity of the ceramic. The dielectric properties of these materials were strongly dependent upon on concentration X as well as amount of frequencies. The existence of metal oxygen bonds of Sr–Ti–O was verified by Fourier Transform Infra Red (FTIR) spectrum at 540 cm−1. The highest PL intensity of 716.38 that exhibits the green emission (508.5 nm) was obtained for the composition of (Sr0.25Mg0.75)(Sn0.5Ti0.5)O3. AC conductivity slowly decreases with increasing Mg substitution and also the sample (Sr0.25Mg0.75)(Sn0.5Ti0.5)O3 having the lowest (constant) value of conductivity at 1 GHz–2GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号