首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
超级电容器复合电极材料的研究进展   总被引:1,自引:0,他引:1  
超级电容器作为一种新型的储能元件,具有高功率密度和高循环寿命等优点,在许多领域特别是混合电动汽车领域具有广阔的应用前景.而电极材料是决定超级电容器性能的关键因素之一,高性能电极材料的合成和优化是目前超级电容器研究的重点.综述了超级电容器的储能原理、超级电容器复合电极材料的制备、性能、以及发展方向.  相似文献   

2.
为了满足能源需求,电化学超级电容器开始持续投入应用.在本研究中,提出了铝掺杂的氧化锌(AZO)纳米薄膜在超级电容器中的潜在应用.纳米薄膜是通过原子层沉积技术制备的,其结构是不同循环次数的ZnO和Al2O3超薄膜的交替叠加.超薄AZO纳米薄膜具有良好的电化学性能,结果表明(10:1)10三明治结构具有最佳的充电和放电性能.在6M KOH电解质中,电流密度为1 A·g-1时,AZO纳米薄膜超级电容器的比电容量可达61 F·g-1.对于超级电容器的实际应用,演示了该器件可以为红色LED灯供电60 min以上.AZO纳米薄膜在超级电容器中具有潜在应用,在未来可推广到可穿戴柔性能源存储器件.  相似文献   

3.
超级电容器作为一种可以快速充放电的储能器件,在电动汽车、微储能电子器件、航空航天等领域有广泛的应用前景。金属氮/氧化物薄膜电极具有优良的电化学性能以及稳定的机械性能,使其成为一种极具发展潜力的超级电容器电极材料。物理气相沉积(PVD)制备的薄膜具有成分结构易调控,膜层与基体结合力好,且可规模化生产等优点,可应用在超级电容器领域,特别是柔性薄膜超电电极的制备。本文论述了PVD在制备氮/氧化物薄膜电极方面的研究进展,并详细探讨了通过PVD制备的金属氮氧化物以及多元金属氮化物薄膜电极的可行性以及PVD柔性薄膜电极的发展前景。  相似文献   

4.
在传统的超级电容器中,有机电解质的存在导致其安全性和灵活性能差,限制了超级电容器的发展和应用.因此,我们开发了一种简易制备的具有强阻燃性、热稳定性、灵活性和电化学特性的离子凝胶超级电容器.具体来说,通过在电极上使用离子凝胶电解质的原位交联,获得了具有优良性能的离子凝胶超级电容器.在离子凝胶电解质中引入大量含醚的柔性链段后,其室温电导率可以高达6.5×10-3 10-3Scm-1.同时,原位交联的制备方法使电解质和电极之间具有紧密的界面接触.由于该离子凝胶电解质具有紧密的电极/电解质界面接触和良好的机械特性,使其在弯曲时保持了稳定的电化学性能.此外,在交联的电解质中加入二氮杂萘结构为离子凝胶电解质提供了良好的阻燃性和热稳定性,使其能够在150℃下保持30分钟的尺寸稳定性.使用离子凝胶电解质制备的超级电容器的比容量为105F g-1,能量密度为41.6 W h kg-1.这项工作为制备和优化离子凝胶交联电解质提供了一种实用方法和新的见解.  相似文献   

5.
超级电容器储能材料的研究进展   总被引:1,自引:1,他引:0  
超级电容器高的电能储存密度以及长的使用寿命引起了世界范围内的关注.通过参考和整理当前超级电容器的研究进展,介绍了两大类超级电容器的原理、主要性能、目前的发展情况和特点.同时,总结了改善和提高超级电容器储能密度的各种材料的选取、制备工艺和途径.在此基础上,认为电化学超级电容器比电介质超级电容器具有更大的储能密度及市场前景.然而,由于电介质超级电容器的独特性能,其在一些电子电气设备、元器件的应用中具有不可替代的作用,值得深入研究.  相似文献   

6.
以超级电容器的电极材料制备、性质研究及对组装非对称超级电容器的性能研究为核心内容,提高超级电容器电化学性能为主要目的,采用原位聚合法制备羧基化多壁碳纳米管(PI-MWCNTs)接枝的聚酰亚胺溶液,将其作为氮掺杂碳的前驱体,实现复合物在碳布表面的生长,并作为电极材料.以二氧化锰-碳布(MnO2-CC)为正极,多壁碳纳米管接枝的聚酰亚胺-碳布为负极(PI-MWCNTs-CC),构建非对称超级电容器.采用扫描电子显微镜、拉曼光谱、X射线衍射、比表面积及孔径测试、循环伏安、恒电流充放电及电化学阻抗谱对电极材料的结构和电化学性能进行表征.结果表明:当扫描速率为20 mV/s时,非对称电容器的电势窗口可增至1.3 V,其体积比容量为1.80 F/cm3;当功率密度为14.08 mW/cm3时,能量密度可达到0.423 mWh/cm3.  相似文献   

7.
超级电容器的韧性、自修复和高比电容对于柔性和可穿戴电子设备具有重要的实用价值.为此,我们制备了一种新型的聚乙烯醇-海藻酸钠-铁氰化钾-硫酸钠多功能凝胶聚合物电解质.其中铁氰化钾起到了三角色作用,包括载流子供体、离子交联剂和氧化还原活性剂,有效地缓解了凝胶聚合物电解质通常存在的电导率与机械性能间的矛盾.此外,由于铁氰化钾的氧化还原反应提供了赝电容,组装的超级电容器具有很高的电极比电容和能量密度.该超级电容器还表现出优异的弯曲、拉伸、自修复和抗冻能力.因而,制备的凝胶聚合物电解质和超级电容器在复杂使用条件下的柔性和可穿戴电子设备中具有广阔的应用前景.  相似文献   

8.
在室温下,采用化学原位聚合法制备得到超级电容器用导电聚苯胺(PANI),并采用扫描电子显微镜(SEM)和X-射线衍射(XRD)对其形貌和结构进行了表征.以制备的PANI为活性物质作为电极材料,1 mol/L Na2SO4水溶液为电解液组装成扣式超级电容器,通过循环伏安和恒电流充放电测试研究其电化学性能.结果表明,制备的...  相似文献   

9.
石墨烯基材料在超级电容器中的应用研究进展   总被引:1,自引:0,他引:1  
石墨烯作为一种新型的碳材料,具有优异的物理、化学及力学性能,如导热导电性能良好、比表面积大及机械强度高,这些特性使其成为应用在电化学领域中的理想材料.总结了超级电容器用石墨烯材料的主流制备方法,综述了最近几年石墨烯及其复合材料在超级电容器中的应用研究进展,并展望了其未来的应用前景.  相似文献   

10.
随着柔性超级电容器在可穿戴、小型化、便携式、柔性消费电子产品中的潜在应用,新材料、新加工技术和新设计得到了推广。电极材料是柔性超级电容器中重要的组成部分,其优异的性能决定了整个器件的应用。通过介绍柔性超级电容器电极材料的制备方法,总结了柔性超级电容器现阶段发展所面临的挑战,期望为制备高性能的柔性超级电容器提供参考。  相似文献   

11.
Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single‐structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy‐density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two‐step process. The 3D few‐layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α‐MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as‐prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg?1 is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg?1). A high specific capacitance (1108.79 F g?1) and power density (799.84 kW kg?1) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge–discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy‐storage devices with high stability and power density in neutral aqueous electrolyte.  相似文献   

12.
Modification of organic substrates with inorganic polyoxometalate (POM) clusters can be used to engineer nanocomposite materials with improved properties and diverse functionalities. This review will outline concepts and methodologies for fabricating POM based inorganic–organic composite materials with a special focus on the electrochemical functionality of these composites for energy storage applications. The strengths and limitations of three different fabrication techniques, chemisorption to a carbon surface, immobilization in a polymer matrix, and layer-by-layer self-assembly will be assessed. Furthermore, the latest developments in the use of POM nanocomposite materials in energy storage applications like electrochemical capacitors (ECs) and lithium ion batteries will be presented. This review will highlight the issues and challenges that need to be addressed to achieve inorganic–organic POM nanocomposites able to support high performance energy storage applications.  相似文献   

13.
自修复聚合物材料能够自行修复在加工和使用过程中产生的微观或者宏观损伤,从而解决材料内部微裂纹难以检测和修复的问题,保持其结构和功能的完整性。将自修复聚合物应用于电化学储能器件中,可有效提升器件的安全可靠性和使用寿命,成为近年来的研究热点之一。本文概括介绍了外援型和本征型自修复聚合物材料的修复机理,着重总结了不需要修复剂、且可实现多次可逆修复的本征型自修复聚合物应用于电化学储能领域的研究进展,以储能器件的电极、电解质以及界面为出发点,综述了自修复功能聚合物分别作为高比能电极黏结剂、界面修饰层、可自修复电解质的研究进展,阐述了自修复机理及其对储能器件电化学性能的影响规律,探讨了自修复聚合物材料在储能领域未来的发展方向。  相似文献   

14.
Renewable energy storage using electrochemical storage devices is extensively used in various field applications. High-power density supercapacitors and high-energy density rechargeable batteries are some of the most effective devices, while lithium-ion batteries (LIBs) are the most common. Due to the scarcity of Li resources and serious safety concerns during the construction of LIBs, development of safer and cheaper technologies with high performance is warranted. Magnesium is one of the most abundant and replaceable elements on earth, and it is safe as it does not generate dendrite following cycling. However, the lack of suitable electrode materials remains a critical issue in developing electrochemical energy storage devices. 2D MXenes can be used to construct composites with different dimensions, owing to their suitable physicochemical properties and unique magnesium-ion adsorption structure. In this study, the construction strategies of MXene in different dimensions, including its physicochemical properties as an electrode material in magnesium ion energy storage devices are reviewed. Research advancements of MXene and MXene-based composites in various kinds of magnesium-ion storage devices are also analyzed to understand its energy storage mechanisms. Finally, current opportunities, challenges, and future prospects are also briefly discussed to provide crucial information for future research.  相似文献   

15.
Graphdiyne (GDY) has drawn much attention for its 2D chemical structure, extraordinary intrinsic properties, and wide application potential in a variety of research fields. In particular, some structural features and basic physical properties including expanded in‐plane pores, regular nanostructuring, and good transporting properties make GDY a promising candidate for an electrode material in energy‐storage devices, including batteries and supercapacitors. The chemical structure, synthetic strategy, basic chemical–physical properties of GDY, and related theoretical analysis on its energy‐storage mechanism are summarized here. Moreover, through a view of the mutual promotion between the structure modification of GDY and the corresponding electrochemical performance improvement, research progress on the application of GDY for electrochemical energy storage is systematically explored and discussed. Furthermore, the development trends of GDY in energy‐storage devices are also comprehensively assessed. GDY‐based materials represent a bright future in the field of electrochemical energy storage.  相似文献   

16.
Hybrid electrochemical energy storage devices combine the advantages of battery and supercapacitors, resulting in systems of high energy and power density. Using LiPF(6) electrolyte, the Ni-Sn/PANI electrochemical system, free of Li-based electrodes, works on a hybrid mechanism based on Li intercalation at the anode and PF(6)(-) doping at the cathode. Here, we also demonstrate a composite nanostructure electrochemical device with the anode (Ni-Sn) and cathode (polyaniline, PANI) nanowires packaged within conformal polymer core-shell separator. Parallel array of these nanowire devices shows reversible areal capacity of ~3 μAh/cm(2) at a current rate of 0.03 mA/cm(2). The work shows the ultimate miniaturization possible for energy storage devices where all essential components can be engineered on a single nanowire.  相似文献   

17.
State‐of‐the‐art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene‐based hybrid two‐dimensional nanostructures. Here, the chemically integrated inorganic‐graphene hybrid two‐dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic‐graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic‐graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene‐based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.  相似文献   

18.
In order to meet the requirement of electric vehicles (EVs), hybrid electric vehicles (HEVs) and smart grids, effective energy storage devices will become imperative in the future energy technologies. However, it is necessary to further improve the energy density, rate performance and cycle performance of the energy storage devices. Zeolitic imidazolate framework-8 (ZIF-8) is a kind of porous materials that has attracted enormous attention due to its high surface areas, controllable structures and tunable pore sizes. Besides the applications in gas storage and separation, catalysis, sensor, and drug delivery, ZIF-8 is receiving increasing research interest in the field of electrochemical energy storage due to the advantage of synthetic method, such as simplicity and safety. By focusing on recent advances, we summarize the applications of ZIF-8 in electrical energy storage devices, such as rechargeable batteries and supercapacitors. We also list the current problems in applications and give the future study direction.  相似文献   

19.
Electrochemical energy storage (EES) devices have attracted immense research interests as an effective technology for utilizing renewable energy. 1D carbon‐based nanostructures are recognized as highly promising materials for EES application, combining the advantages of functional 1D nanostructures and carbon nanomaterials. Here, the recent advances of 1D carbon‐based nanomaterials for electrochemical storage devices are considered. First, the different categories of 1D carbon‐based nanocomposites, namely, 1D carbon‐embedded, carbon‐coated, carbon‐encapsulated, and carbon‐supported nanostructures, and the different synthesis methods are described. Next, the practical applications and optimization effects in electrochemical energy storage devices including Li‐ion batteries, Na‐ion batteries, Li–S batteries, and supercapacitors are presented. After that, the advanced in situ detection techniques that can be used to investigate the fundamental mechanisms and predict optimization of 1D carbon‐based nanocomposites are discussed. Finally, an outlook for the development trend of 1D carbon‐based nanocomposites for EES is provided.  相似文献   

20.
Stimuli‐responsive energy storage devices have emerged for the fast‐growing popularity of intelligent electronics. However, all previously reported stimuli‐responsive energy storage devices have rather low energy densities (<250 Wh kg–1) and single stimuli‐response, which seriously limit their application scopes in intelligent electronics. Herein, a dual‐stimuli‐responsive sodium‐bromine (Na//Br2) battery featuring ultrahigh energy density, electrochromic effect, and fast thermal response is demonstrated. Remarkably, the fabricated Na//Br2 battery exhibits a large operating voltage of 3.3 V and an energy density up to 760 Wh kg?1, which outperforms those for the state‐of‐the‐art stimuli‐responsive electrochemical energy storage devices. This work offers a promising approach for designing multi‐stimuli‐responsive and high‐energy rechargeable batteries without sacrificing the electrochemical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号