首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
原位聚合制备PANI/GO复合材料及其电化学性能研究   总被引:1,自引:0,他引:1  
阮艳莉  王坤  齐平平  韩煦 《功能材料》2015,(2):2100-2104
利用原位化学氧化聚合的方法制备了聚苯胺/氧化石墨烯(PANI/GO)复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)及红外光谱(IR)等方法对其结构和形貌进行了表征。利用自制的PANI/GO复合材料作为电极材料分别组装了超级电容器及锂离子电池,并对其电化学性能进行了测试。结果表明,GO在不同的电化学器件中均能够明显改善PANI的电化学性能。以PANI/GO作为超级电容器电极材料,放电时其比电容达413.28F/g,高于纯PANI的322.56F/g,1 000次循环后,容量保持率为70%。以PANI/GO作为锂离子电池正极材料,0.1C下首次放电比容量达104.4mAh/g,50次循环后,容量未见衰减。  相似文献   

2.
以二氧化锰(MnO2)为氧化剂,通过乳液聚合法室温条件下制备了十二烷基苯磺酸钠(SDBS)、十二烷基磺酸钠(SDS)、曲拉通(T-X100)掺杂的聚苯胺(PANI-SDBS、PANI-SDS、PANI-T-X100)。并采用扫描电子显微镜(SEM)、傅立叶变换红外光谱(FT-IR)以及X射线衍射(XRD)对其结构和形貌进行了表征。以掺杂PANI为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)、电化学阻抗(EIS)和恒电流充放电技术分别测试了掺杂PANI电化学性能。结果表明,以PANI-SDBS、PANI-T-X100为电极材料的超级电容器在5mA/cm2放电电流下的比电容为393、339F/g,均高于未掺杂PANI的比电容(228F/g),1000次循环后的比电容仍高于未掺杂PANI。其中PANI-SDBS纤维纳米材料具有较高的比容量和良好的循环性能。  相似文献   

3.
采用化学氧化法制得氧化石墨烯(GO),再用NaBH4还原得到石墨烯(GN);以二氧化锰为氧化剂,室温下通过化学氧化聚合法制备了聚苯胺/石墨烯复合材料(PANI/GN)。采用扫描电子显微镜(SEM)及X-射线衍射(XRD)对其结构和形貌进行了表征。以PANI/GN为活性物质制备电极,1.0mol/L H2SO4水溶液为电解液组装超级电容器,用循环伏安法(CV)和恒电流充放电技术分别测试了PANI/GN电化学性能,在0.1A/g的电流密度下的比容量为468.5F/g,经过1000次连续充放电,电容保持率为84.9%。与PANI、GN单一材料相比,PANI/GN复合物具有较高的比电容和很好的循环稳定性。  相似文献   

4.
采用化学氧化聚合制备了十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺(PANI)材料,采用恒流充放电、循环伏安和交流阻抗技术研究了以其作为电极材料的超级电容器在中性、酸性和碱性水系电解液中的性能.结果表明:电流密度为6mA/cm2时聚苯胺电容器在酸性电解液(1mol/LH2SO4)中容量高达108.4F/g、循环性能好,在中性电解液中性能稍差.  相似文献   

5.
过渡金属氧化物二氧化锰(MnO_2)和导电聚合物聚苯胺(PANI)都是超级电容器中备受关注的两种电极材料。首先介绍了超级电容器材料及其储能机理,并详细介绍了MnO_2电极材料的应用和缺点、PANI电极材料应用和缺点以及MnO_2/PANI二元复合材料的研究进展,最后总结了目前电极材料在超级电容器方面遇到的问题和将来电极材料的发展趋势。  相似文献   

6.
采用简单的化学氧化聚合法,制备了分散性良好且尺寸均一的聚苯胺(PANI)纳米线电极材料,其直径和长度分别为~60nm和~1μm。三电极体系电化学测试结果表明PANI纳米线电极在电流密度为0.5A/g时的质量比电容为505F/g,电流密度从0.5A/g增至20A/g的电容保持率高达78%。PANI纳米线电极材料有望成为组装高倍率性能超级电容器的可选电极材料。  相似文献   

7.
室温下,以二氧化锰和过硫酸铵为氧化剂,采用原位化学聚合法合成聚苯胺/中间相炭微球(PANI/MCMB)复合物。采用场发射扫描电镜(FE-SEM)和X射线粉末衍射(XRD)对其形貌结构进行表征。以PANI/MCMB复合物为电极活性物质,1.0mol/L H_2SO_4水溶液为电解液组装对称型超级电容器,用循环伏安法(CV)、电化学交流阻抗(EIS)、恒流充放电等测试手段测试超级电容器的电化学性能。结果表明,以二氧化锰为氧化剂制备的聚苯胺/中间相炭微球复合物(MPANI/MCMB),在电流密度为0.1A/g时,单电极比容量为336.4F/g。1 000次循环后比容量保持率为92.3%,比以过硫酸铵为氧化剂制备的聚苯胺/中间相炭微球复合物(NPANI/MCMB)具有更好的循环性能和更高的比容量。  相似文献   

8.
研究采用一步电化学剥离和电沉积法,在含Na2SO4、HCl与苯胺(An)单体的混合溶液中,以柔性石墨纸为原料,利用电场条件下电解液离子定向迁移和苯胺单体的电聚合制备聚苯胺纳米线/自支撑石墨烯(PANI/SGr)复合材料。更具活性的新生SGr与PANI结合,显著提高了PANI/SGr复合材料的稳定性。PANI呈纳米线状均匀分布在SGr上,形成的三维网络结构所呈现出的孔隙促进了电解液离子扩散到复合材料的内部结构中。将PANI/SGr复合材料作为超级电容器电极材料进行电化学测试,2 mV·s?1的扫速下获得的比电容为453 F·g?1。在0.5~10 A·g?1的电流密度范围内,PANI/SGr复合材料倍率性能达73.1%。在1 A·g?1的电流密度下PANI/SGr复合材料经10000次充放电之后的循环稳定性仍高达87.3%。这表明PANI/SGr复合材料具有良好的电容性能和优异的循环稳定性,有望作为超级电容器电极材料。   相似文献   

9.
聚苯胺的电化学制备及电容特性   总被引:1,自引:0,他引:1  
在硫酸介质中以苯胺为单体,采用循环伏安法(CV)合成了聚苯胺(PANI)。利用红外光谱(FTIR)、X射线衍射(XRD)、场发射扫描电镜(SEM)等手段对其结构和形貌进行了表征。在2 mol/L KOH电解液中,对合成的聚苯胺粉末构成的电极进行了循环伏安、恒流充放电(CP)及交流阻抗(EIS)等电化学性能测试。结果表明,电化学合成硫酸掺杂的PANI有良好的结晶性并呈现出纳米棒的结构,电流密度为20mA/cm2时,PANI电容器的比电容高达421.11 F/g,是一种具有优良应用前景的超级电容器材料。  相似文献   

10.
在聚苯胺(PANI)和聚吡咯(PPy)的相应单体溶液中,采用循环伏安法(CV)在不锈钢基体(SS)上分层聚合制备了具有聚苯胺/聚吡咯复合薄膜(PANI/PPy/SS)的电极材料。用傅里叶变换红外光谱(FT-IR)、X射线衍射(XRD)对其结构进行了表征。在0.5mol/L H2SO4中,对PANI/PPy/SS电极材料进行了循环伏安法、恒流充放电、交流阻抗谱(EIS)等电化学性能测试,并用塔菲尔曲线(Tafel)研究了其耐腐蚀性能。结果表明,当电流密度为5mA/cm2时,PANI/PPy/SS电极材料比电容达747.5F/g,且复合膜的腐蚀电位相对于单纯的PANI、PPy薄膜分别正移了0.064V、0.117V,表现出较好的耐腐蚀性,是一种应用前景很好的超级电容器材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号