首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure and the nano‐friction behaviour of a new kind of ultrathin film, a molecular deposition (MD) film, on an Au substrate were studied. The MD film is formed by the electrostatic attraction between opposite charges of cationic and anionic compounds, and a multilayer film can be built through alternating deposition of bipolar cationic and anionic compounds. Monolayer, bilayer, trilayer, and tetralayer MD films on Au substrates were examined. MD films with an alkyl terminal group were also investigated. It was found that while the MD film on an Au substrate reduced the friction, its nano‐friction behaviour was unstable because of the active terminal group. However, if the MD film was formed with an alkyl terminal group, its nano‐friction behaviour became stable and its friction decreased markedly. Therefore, this film termination method could contribute to the nano‐tribological application of MD films.  相似文献   

2.
Polyallylamine hydrochloride (PAH)/graphite oxides (GO) ultrathin film and the multilayer film of PAH incorporated with TiO2 enwrapped by polyacrylic acid (PAA), namely PAH/PAA(TiO2) composite film, were prepared by molecular deposition (MD) method in laboratory. Both of them were heated to change the film forming dynamic force from electrostatic force to covalent bond so as to increase the bonding strength of the films. The structure and nanotribological properties of the films were analyzed by atomic force microscope (AFM) and ultraviolet-visible (UV) spectroscopy. It was found that these films had a much smaller friction force than their substrates and the friction force was dependent on the morphology and/or hardness of the films.  相似文献   

3.
For the successful application of boundary lubrication, detailed investigations about the influence of preparation process on molecular films are needed. In this paper, a specially designed device was used for the film preparation. The scanning electron microscope (SEM) combined with atomic force microscope (AFM) was employed to characterize the surface morphology and nanotribological behavior of molecular films. After the liquid phase deposition, molecular films are randomly and densely distributed over Ti-doped diamond-like carbon (Ti-DLC) substrates. Through rigorous surface treatments, island-like molecular films were finally achieved on substrate surfaces. The surface friction of molecular films is obviously lower than that of Ti-DLC surfaces. Then, pin-on-disk tribotests were performed to study the macrofriction behavior of molecular films under different preparation parameters. Based on the orthogonal experiment, the effect of five preparation parameters (solution weight percent, smearing force and processing time of three smearing steps) on initial friction coefficient of molecular films was investigated. The results indicated that the order of significance levels is as follows: processing time of the second smearing step > solution weight percent > processing time of step 1 > processing time of step 3 > smearing force. For the purpose of friction reduction, the appropriate level ranges are 0.75% (Solution), 2.5 N–15 N (Force), 1 min–10 min (Step 1), 1 min–2 min (Step 2) and 1 min, 2 min, 5 min and 15 min (Step 3). The initial friction coefficient under the optimized conditions is around 0.112, and the equilibrium friction coefficient is around 0.162, which is lower than that of unlubricated Ti-DLC substrates.  相似文献   

4.
Experiments on molecular deposition (MD) films with and without alkyl terminal groups deposited on silicon wafers were conducted using nano‐indentation. It was found that MD films and alkyl‐terminated MD films exhibit a higher critical load and a lower coefficient of friction than the silicon substrate. The critical load increases with the number of layers, and the coefficients of friction of MD films with alkyl terminal groups are lower than those of the corresponding MD films with the same number of layers but without alkyl terminal groups.  相似文献   

5.
通过实验和模拟研究磨粒对润滑油摩擦性能的影响。首先通过微纳米压/划痕试验测量含磨屑润滑油的摩擦因数。同时,建立边界润滑体系模型,采用分子动力学方法模拟含磨屑润滑油膜在不同载荷下沿膜厚方向的压缩率和密度分布;对体系的上下固体壁面施加方向相反的剪切速度,计算出壁面原子的应力、摩擦力、正压力和摩擦因数;分析不同粒径磨屑的动态行为特征;通过减少润滑油分子数量,探究乏油工况下含磨屑润滑体系的摩擦性能。结果表明,润滑体系摩擦因数的模拟值与试验值一致;磨屑的存在会降低油膜的压缩率,同时在高载下磨屑的存在会对油膜的分层产生破坏,影响磨屑附近的密度分布;含小粒径磨屑的润滑体系的摩擦因数比含大粒径磨屑的润滑体系的小,表明磨粒聚集长大现象会恶化润滑油的润滑性能;磨屑在剪切过程中同时存在滚动和滑动,含小粒径磨屑的润滑体系剪切过程中表现出波动幅度更大的角速度;随着载荷的增大,磨屑角速度减小,波动幅度降低;在乏油工况下,磨屑会在剪切过程中出现变形破碎现象。  相似文献   

6.
With excellent lubricating property, zinc oxide (ZnO) films are promising candidates to act as protective coatings in Si-based microelectromechanical system devices for the purpose of decreasing friction forces of silicon (Si) material. In this paper, the nanotribological behavior of ZnO films prepared by atomic layer deposition on a Si (100) substrate is investigated by an atomic force microscope. The ZnO films have various thicknesses ranging from 10.0 to 182.1 nm. With the increase of film thickness, the root-mean-square roughness of the films increases, while the ratio of hardness to Young’s modulus (H/E) decreases. Due to their large surface roughness, the thick ZnO films are low in adhesion force. The friction force of the ZnO films is smaller than that of the Si (100) substrate and is greatly influenced by their adhesion force and mechanical property. In a low-load condition, the friction force is dominated by the adhesion force, and thus, the friction force of the ZnO films decreases as film thickness increases. While in a high-load condition, the friction force is dominated by plowing. Films with higher H/E possess smaller friction force, and thus, the friction force increases with the decreasing film thickness.  相似文献   

7.
Due to their light weight, low corrosion and good tribological properties, polymer films have been widely studied in dry condition as well as recently in aqueous environment. Though the presence of water can further reduce the friction, it promotes the wear rate of the polymer films. As a remedy to decrease the wear rate of polymer films under aqueous condition, in this study, we used PMMA brush which is chemically anchored to a substrate and compared its friction and wear properties with those of conventional PMMA spin-cast film. Ellipsometry, contact angle measurements and atomic force microscopy are used to study the surface properties, e.g., wear mechanisms and wear depths of PMMA films. Under different sliding speeds and applied loads, PMMA brush showed lower friction than PMMA spin-cast film in aqueous. Moreover, it was shown that the swelling of water molecules is a dominant factor in determining the wear durability of PMMA films in which PMMA brush showed better wear performance than PMMA spin-cast film.  相似文献   

8.
Ocean tribology, a new research field of tribology, is currently being established and developed. The tribological behaviors of polyether ether ketone (PEEK), poly(phenyl p-hydroxybenzoate) (PHBA), polyimide (PI), and perfluoroethylene propylene copolymer (FEP) sliding against GCr15 and 316 steel rings under the lubrication of sea water were studied and compared with that under the lubrication of pure water. The results show that the friction and wear behaviors of a polymer under the lubrication of aqueous medium are not only related to the properties of polymer itself, but also to the corrosive effect and lubricating effect of the medium. When a polymer slid against GCr15 steel under sea water lubrication, the friction coefficient and wear rate of polymer were much larger than that under pure water lubrication because of indirect corrosive wear. However, when sliding against corrosion-resistant 316 steel, polymers PEEK, FEP, and PI exhibited lower coefficients of friction and wear rates under sea water lubrication, this was attributed to better lubricating effect of sea water as a result of the deposition of CaCO3 and Mg(OH)2 on the counterface. On the contrary, the friction coefficient and wear rate of PHBA sliding against 316 steel under sea water lubrication were larger than that under pure water lubrication, which may be related to the properties of PHBA itself.  相似文献   

9.
This paper presents a material combination that reduces the friction coefficient markedly to a superlow friction regime (below 0.01) under boundary lubrication. A state approaching superlubricity was obtained by sliding hardened steel pins on a hydrogen-free diamond-like carbon (DLC) film (ta-C) lubricated with a poly-alpha-olefin (PAO) oil containing 1 mass% of an ester additive. This ta-C/steel material combination showed a superlow friction coefficient of 0.006 at a sliding speed of 0.1 m/s. A hydrogencontaining DLC coating/steel combination also showed a lower friction coefficient in air than a steel/steel combination, 0.1 vs. 0.8, but no large reduction was observed when the sliding surfaces were lubricated with ordinary 5W-30 engine oil and the PAO oil containing an ester additive. The friction coefficient of the hydrogen containing DLC/steel combination lubricated with the PAO containing an ester additive was above 0.05. On the other hand, the superlow friction performance demonstrates that the rolling contact friction level of needle roller bearings can be obtained in sliding contact under a boundary lubrication condition. It is planned to apply this advanced DLC coating technology to valve lifters lubricated with a newly formulated engine oil in actual mass-produced gasoline engines. A larger friction reduction of more than 45% is expected to be obtained at an engine speed of 2000 rpm.  相似文献   

10.
The effects of added materials such as metals like titanium (Ti), molybdenum (Mo) and iron (Fe) diamond-like carbon (DLC) films on boundary lubrication and microtribological properties were investigated. The nanoindentation hardness and microwear resistance can be improved by adding the proper metal to DLC films, as evaluated by atomic force microscopy (AFM). Boundary lubrication properties of DLC films with metals are improved as comparing with DLC films without metal under lubricant with both MoDTC and ZDDP additives. Moreover, lower friction coefficient of μ=0.03 than carburized steel is exhibited with the appropriate quantity of Ti added. The tribochemical reactant was formed on the sliding surface of the Ti-containing DLC film like as carburized steel. Higher mechanical damping materials containing elements, such as Mo, Zn, P and S, formed tribochemical reactors as observed by X-ray photoemission spectroscopy (XPS) and AFM force modulation methods.  相似文献   

11.
To develop electroconductive and high-endurance solid lubricant nanoperiod multilayer (DLC/Au)n films, diamond-like carbon (DLC) and gold layers were deposited while controlling the time the substrate was exposed graphite and gold targets. The electrical resistivity of the (DLC/Au)n multilayer films was ~12.4 Ω cm. The hardness of the (DLC/Au)n multilayer films was similar to that of DLC films and much higher than that of gold monolayer films. According to the results of oscillating sliding tests under water boundary lubrication and dry conditions, (DLC/Au)n multilayer films exhibited the low friction coefficient, little damage, and high sliding durability than the monolayer films. (DLC/Au)n films also have a lower friction coefficient and exhibit less damage than a Au monolayer under polyalphaolefin boundary lubrication.  相似文献   

12.
基于分子动力学方法,建立超薄含水柴油膜的全原子分子模型,进行不同含水率下油膜Couette流的润滑特性研究。在相同剪切速度作用下,分析含水油膜的微观结构、速度分布、整体键取向参数、剪切黏度等性质。发现不含水时油膜形成了类固体层,不具有流动性,且在剪切过程中黏度值下降,即表现出剪切时间稀化现象;而含水工况下,油膜出现分层结构,流速符合Couette流的流动特性;且含水率越高,油膜的分层现象越明显,链烃的有序性越强,致使油水混合薄膜的剪切黏度值也越低,呈现出非牛顿流体性质,此时油膜固有的剪切稀化特性被削弱。研究表明,水分子由于具有较强的分子间作用力,能促使油膜中的有机分子重新排布,从而对油膜的润滑性能产生较大改变。  相似文献   

13.
在分析橡胶材料干摩擦和水润滑摩擦两种摩擦机理的基础上,采用INSTRON高频疲劳试验机对O形密封圈在这两种状态下的摩擦力进行了测试。试验获得了不同滑移速度下摩擦系数与载荷的关系以及不同载荷下摩擦系数与滑移速度之间的关系。结果表明:水润滑状态下由于密封接触面能够形成润滑水膜,摩擦力较小,更适合长期稳定运转。  相似文献   

14.
在UMT-2微摩擦试验机上,对单晶硅片进行了干摩擦和水润滑两种状态下的摩擦磨损试验,分析讨论了载荷和滑动速度对单晶硅片的摩擦因数和磨损率的影响规律;运用扫描电子显微镜,观察和分析了其磨损表面形貌。结果表明:干摩擦条件下的磨损机理主要表现为黏着磨损,水润滑条件下的磨损机理主要表现为机械控制化学作用下的原子/分子去除过程;水润滑条件下的摩擦因数和磨损量均较小,最小磨损率仅为10μm3/s;在水润滑条件下,载荷和滑动速度达到一定值时,硅片表面将发生摩擦化学反应,生成具有润滑作用的Si(OH)4膜,即机械作用在一定条件下对化学反应具有促进作用。  相似文献   

15.
Tribological properties of Fe–Mo type disk specimens were investigated against ASTM 52100 steel balls under the lubrication of poly-alpha-olefin (PAO) and PAO containing 1.5 mass% alkyl-phosphonic acid-triazole-methanamine (PN additive). Both the Fe7Mo6-based alloy and Mo disk specimens exhibited lower friction and lower wear rates than the Fe and gray cast iron disk specimens under the lubrication of PAO. The friction coefficients of the Fe7Mo6-based alloy disk specimens were reduced to 0.07 by adding 1.5 mass% PN additive to PAO. No wear volume loss was observed on the Fe7Mo6-based alloy disk specimens when they were lubricated with PAO containing 1.5 mass% PN additive.  相似文献   

16.
为了探究氧化石墨烯(GO)添加剂在不同润滑状态下对基础油成膜特性的影响,利用原子力显微镜(AFM)和傅里叶变换红外光谱仪(FTIR)分别对GO的厚度、层数和表面官能团进行表征,选用聚α-烯烃(PAO10)和聚醚(PAG)为基础油,利用球-盘点接触光干涉油膜厚度测量试验台,研究GO添加剂在弹流润滑和混合润滑状态下对不同基础油润滑成膜性能的影响。结果表明:在全膜润滑状态下,GO对PAO10和PAG基础油的成膜能力影响很小,添加GO前后基础油的最小膜厚相差并不大;在混合润滑状态下,GO可有效地提高PAO10基础油的最小膜厚,减缓接触区内的乏油状况,而对PAG基础油成膜性能的影响很小。  相似文献   

17.
1Cr18Ni9Ti stainless steel was modified by plasma nitriding. The phase composition of the plasma nitrided layer was examined by means of X-ray diffraction. The friction and wear properties of the modified and unmodified 1Cr18Ni9Ti stainless steel specimens sliding against SAE52100 steel under the lubrication of ionic liquid of 1-ethyl-3-hexylimidazolium hexafluorophosphate (L-P308) and poly α-olefin (PAO) were investigated on an Optimol SRV oscillating friction and wear tester, with the interactions among the modified surface layer and the ionic liquids and PAO to be focused on. The morphologies of the worn surfaces were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces of the modified steel surfaces were examined by means of X-ray photoelectron spectroscopy. Results showed that the modified sample had better anti-wear abilities than the unmodified one, but the modified sample had a slightly higher friction coefficient than the untreated one. This was partly attributed to the change in the hardness and phase composition of the stainless steel surfaces after plasma nitriding and tribochemical reactions between the steel and the lubricant. The resultant surface protective films composed of various tribochemical products together with the adsorbed boundary lubricating film contributed to reduce the friction and wear.  相似文献   

18.
This study investigates the rheological properties, elastohydrodynamic film thickness, and friction coefficients of several commercially available polyalphaolefin (PAO) and polydimethylsiloxane (PDMS)-based lubricants to assess relationships between molecular structure and lubricant performance. Molecular structures and masses were determined by nuclear magnetic resonance spectroscopy and gel permeation chromatography, respectively. Density and viscosity are measured from 303 to 398?K, while elastohydrodynamic lubricant film thickness and friction measurements were made at temperatures, loads, and speeds that are representative of boundary, mixed, and full-film lubrication regimes. The results show that PDMS-based lubricants are thermally and oxidatively more stable than PAOs, while the viscosity of PDMS-based lubricants is generally less temperature sensitive than PAOs, except for highly branched polysiloxanes. In particular, this study provides quantitative insight into the use of PDMS-based lubricants to obtain low friction through the entire lubrication regime (boundary to full film) by optimal tuning of the molecular mass and chain branching.  相似文献   

19.
水润滑轴承材料弹流润滑性能比较研究   总被引:1,自引:0,他引:1  
利用考虑惯性力的Reynolds方程,对水润滑条件下的实验橡胶滑块与钢环的弹流润滑问题进行了数值模拟,并分别与塑料、陶瓷材料的数值模拟结果进行了对比分析。结果表明,在水润滑条件下,惯性力对水膜压力的影响很小,而对水膜厚度及温度的影响很大。同样情况下,考虑惯性力时,最小膜厚增加,最高温度降低。橡胶/钢摩擦副中,惯性力对膜厚的影响是不可忽略的。陶瓷/钢摩擦副中,考虑惯性力时对温度影响更大。  相似文献   

20.
为开发与CrCN涂层具有良好配伍润滑性能的绿色润滑剂,使用磁控溅射技术在304不锈钢表面沉积CrCN涂层,利用场发射扫描电子显微镜、原子力显微镜、纳米压痕仪、维氏硬度计、X射线衍射仪、X射线光电子能谱仪分别对其表面形貌、涂层厚度、力学性能、物相组成以及元素化学价态进行分析,并借助多功能摩擦磨损试验机评价在甘油润滑下CrCN涂层的摩擦学性能,并与PAO6润滑下结果进行比较。利用磁控溅射技术在不锈钢表面构筑的CrCN涂层表面光滑致密,粗糙度仅为1.01 nm,硬度可达14.39 GPa。对比钢-钢和钢-CrCN体系的摩擦学性能发现,钢-CrCN体系在甘油润滑下展现出优异的润滑性能;当负载为0.5 N时,钢-CrCN体系在甘油润滑下的摩擦因数可低至0.01,大大低于PAO6润滑下的摩擦因数。对磨痕的XPS分析表明,在摩擦过程中,甘油发生摩擦化学反应,在CrCN涂层的接触表面生成一层FeOOH层,甘油分子及其降解产物可能进一步吸附在FeOOH层,形成流体润滑层,有效降低了摩擦和磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号