首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤水分对冬小麦影响机制研究   总被引:5,自引:1,他引:5  
郭建平  高素华 《气象学报》2003,61(4):501-506
文中通过试验系统地研究了冬小麦叶片气孔形态与土壤湿度的关系,结果表明:土壤干旱使气孔密度增加,上表皮的密度大于下表皮;气孔开张度随土壤湿度下降而变小;气孔导度与土壤湿度呈指数相关,随土壤含水量的下降呈指数减少。随土壤湿度的改变小麦的生理过程也发生改变,蒸腾速率随土壤湿度下降呈指数减小。并研究了土壤干旱对叶绿素超微结构的影响及与脯氨酸的关系。  相似文献   

2.
以冬小麦品种“齐麦2号”为试材,在水分关键期(拔节期~扬花期),设计5个水分处理(T1处于适宜水平,T2、T3、T4、T5分别按照水分关键期常年降水量减少20%、50%、75%、100%进行一次性补水)和1个雨养对照水分控制试验,模拟研究不同程度干旱胁迫对水分关键期冬小麦光合生理特性、抗氧化酶活性及产量结构的影响。结果表明:轻度干旱胁迫会造成冬小麦叶片最大光合速率、气孔导度、胞间CO2浓度降低,气孔限制值升高,气孔因素是导致冬小麦叶片光合速率降低的主要原因;而当干旱胁迫达到重度时,胞间CO2浓度升高,气孔限制值降低,非气孔因素是导致冬小麦叶片光合速率降低的主要原因。轻度干旱胁迫会使得冬小麦叶片SOD酶、POD酶、CAT酶活性显著升高,从而减轻MDA含量升高对冬小麦叶片膜系统的损伤,复水后抗氧化酶活性和MDA含量均可恢复至正常水平,而重度干旱胁迫下冬小麦叶片SOD酶、POD酶、CAT酶活性不同程度降低,复水后抗氧化酶活性及MDA含量均无法恢复至正常水平,抗氧化酶系统遭受不可逆损伤。此外,水分关键期干旱胁迫还导致冬小麦灌浆速率降低、不孕穗率升高,理论产量大幅降低。研究结论可为科学评估干旱胁迫对冬小麦生长发育及产量形成的影响提供理论依据。  相似文献   

3.
相对湿度对黄瓜叶片光合特性的影响   总被引:1,自引:0,他引:1  
张婷华  杨再强  李叶萌  张波 《气象科技》2013,41(6):1128-1133
以黄瓜“津优1号”为试材,于2011年4月在南京信息工程大学进行人工环境控制试验,设计8个相对湿度梯度,用LI 6400进行光合参数的测定,系统研究不同相对湿度处理对黄瓜叶片光合特性的影响。结果表明:黄瓜叶片的净光合速率和胞间CO2浓度随着相对湿度的减小而降低;气孔导度、蒸腾速率和叶片的水分利用效率在相对湿度为75%时达到最大;而气孔限制值在相对湿度为75%时降到最低;黄瓜叶片最大光合作用速率(Pmax)与空气相对湿度呈指数关系:Pmax=22375e189085fRH;随空气相对湿度的减小,黄瓜叶片的表观量子效率、光饱和点均降低,而光补偿点增加;相关分析表明,净光合速率与叶面水汽压差呈负相关,而与气孔导度、胞间CO2浓度、相对湿度、蒸腾速率均呈正相关,且相关性均达到极显著水平。  相似文献   

4.
利用遥感信息研究区域冬小麦气孔导度的时空分布   总被引:5,自引:0,他引:5  
气孔导度是影响作物蒸散和作物的光合速率进而影响作物产量的重要因子。文中通过利用NOAA-AVHRR数据首次对华北平原典型区冬小麦气孔导度分布进行了研究,给出了华北平原典型区冬小麦不同生长季节的气孔导度空间分布状况,为进一步研究田间水分和作物蒸散对产量影响以及建立遥感作物水分胁迫生物量模型和监测不同生育期的农田缺水等提供依据。  相似文献   

5.
CO2和O3浓度倍增对作物影响的研究进展   总被引:14,自引:0,他引:14  
文中利用自行设计的OTC - 1型开顶式气室进行了 9a的田间试验 ,取得了一批质量可靠的试验数据 ,分析了CO2 浓度倍增对大豆、冬小麦、棉花、玉米、春小麦和谷子的生物量、产量及品质的影响 ,结果表明CO2 浓度倍增对上述 6种作物的生物量及产量的影响均是正效应 ,对冬小麦、棉花和谷子品质的影响可能是有利的 ,对玉米品质的影响可能是不利的 ,对大豆的影响不大 ;分析了O3 浓度倍增对冬小麦、水稻、油菜和菠菜生物量、产量及品质的影响 ,结果表明O3 浓度倍增对上述 4种作物生物量的影响均是负效应 ,对冬小麦和水稻的产量影响是负效应 ,但是冬小麦和水稻籽粒中粗蛋白和 17种氨基酸含量都有所增加 ;分析了CO2 和O3 浓度复合倍增对大豆生物量、产量及品质的影响 ,结果是生物量和产量呈增加趋势 ,说明了CO2 的正效应大于O3 的负效应。采用作物模型数值模拟方法 ,分析了CO2 和O3 浓度倍增对冬小麦生物量及产量的影响。  相似文献   

6.
贾立  王介民 《高原气象》1994,13(3):359-368
  相似文献   

7.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative e ects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone e ects on crops in farmland environment.  相似文献   

8.
With the rapid development of industrialization and urbanization, the enrichment of tropospheric ozone and carbon dioxide concentration at striking rates has caused effects on biosphere, especially on crops. It is generally accepted that the increase of CO2 concentration will have obverse effects on plant productivity while ozone is reported as the air pollutant most damaging to agricultural crops and other plants. The Model of Carbon and Nitrogen Biogeochemistry in Agroecosystems (DNDC) was adapted to evaluate simultaneously impacts of climate change on winter wheat. Growth development and yield formation of winter wheat under different O3 and CO2 concentration conditions are simulated with the improved DNDC model whose structure has been described in another paper. Through adjusting the DNDC model applicability, winter wheat growth and development in Gucheng Station were simulated well in 1993 and 1999, which is in favor of modifying the model further. The model was validated against experiment observation, including development stage data, leaf area index, each organ biomass, and total aboveground biomass. Sensitivity tests demonstrated that the simulated results in development stage and biomass were sensitive to temperature change. The main conclusions of the paper are the following: 1) The growth and yield of winter wheat under CO2 concentration of 500 ppmv, 700 ppmv and the current ozone concentration are simulated respectively by the model. The results are well fitted with the observed data of OTCs experiments. The results show that increase of CO2 concentration may improve the growth of winter wheat and elevate the yield. 2) The growth and yield of winter wheat under O3 concentration of 50 ppbv, 100 ppbv, 200 ppbv and the based concentration CO2 are simulated respectively by the model. The simulated curves of stem, leaf, and spike organs growth as well as leaf area index are well accounted with the observed data. The results reveal that ozone has negative effects on the growth and yield of winter wheat. Ozone accelerates the process of leaf senescence and causes yield loss. Under very high ozone concentration, crops are damaged dramatically and even dead. 3) At last, by the model possible effects of air temperature change and combined effects of O3 and CO2 are estimated respectively. The results show that doubled CO2 concentration may alleviate negative effect of O3 on biomass and yield of winter wheat when ozone concentration is about 70-80 ppbv. The obverse effects of CO2 are less than the adverse effects of O3 when the concentration of ozone is up to 100 ppbv. Future work should determine whether it can be applied to other species by adjusting the values of related parameters, and whether the model can be adapted to predict ozone effects on crops in farmland environment.  相似文献   

9.
C3植物光合作用日变化的模拟   总被引:28,自引:1,他引:27  
对前人光合作用-气孔导度耦合模型进行了修正,建立了光合作用-蒸腾作用-气孔导度的耦合模型,它概括了叶片上各主要物理过程和生理过程之间的相互联系和制约关系。 用数值方法研究了不同环境因子(太阳辐射、温度、湿度和风速等)对光合作用、蒸腾作用和气孔导度的日变化及中午降低(midday depression)的影响。 主要结果是:(1)当边界层导度减小时,光合“午睡”加剧,蒸腾作用减弱,但作为反馈调节,气孔导度增加。 (2)气孔导度的最适温度最低,光合作用次之,蒸腾作用最适温度最高。当光合作用中午受到高温的胁迫时,气孔导度下降的幅度最大,光合作用次之,蒸腾作用的降幅最小。一天中,气孔导度降低的持续时间最长,蒸腾作用降低的持续时间最短。(3)空气绝对湿度越低,气孔导度越低,光合午睡越明显。蒸腾作用则决定于饱和水汽压差(Vpd)和气孔导度两个因素的相反的作用。蒸腾作用随Vpd增加而增大,但Vpd超过一定值后,反而使蒸腾作用下降。 (4)当温度在光合最适温度以上时,太阳辐射的增加使叶温增加,引起光合“午睡”的加剧和气孔导度的降低。(5)ci/cs在中午的降低表明气孔的关闭是光合作用“午睡”现象的原因。  相似文献   

10.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants.It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported.The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods-one was impacts of ozone on light use efficiency , and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coe cients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

11.
Ozone is well documented as the air pollutant most damaging to agricultural crops and other plants. It is reported that tropospheric O3 concentration increases rapidly in recent 20 years. Evaluating and predicting impacts of ozone concentration changes on crops are drawing great attention in the scientific community. In China, main study method about this filed is controlled experiments, for example, Open Top Chambers. But numerical simulation study about impacts of ozone on crops with crop model was developed slowly, what is more, the study about combined impacts of ozone and carbon dioxide has not been reported. The improved agroecosystem model is presented to evaluate simultaneously impacts of tropospheric O3 and CO2 concentration changes on crops in the paper by integrating algorithms about impacts of ozone on photosynthesis with an existing agroecosystem biogeochemical model (named as DNDC). The main physiological processes of crop growth (phenology, leaf area index, photosynthesis, respiration, assimilated allocation and so on) in the former DNDC are kept. The algorithms about impacts of ozone on photosynthesis and winter wheat leaf are added in the modified DNDC model in order to reveal impacts of ozone and carbon dioxide on growth, development, and yield formation of winter wheat by coupling the simulation about impacts of carbon dioxide on photosynthesis of winter wheat which exists in the former DNDC. In the paper, firstly assimilate allocation algorithms and some genetic parameters (such as daily thermal time of every development stage) were modified in order that DNDC can be applicable in North China. Secondly impacts of ozone on crops were simulated with two different methods- one was impacts of ozone on light use efficiency, and the other was direct effects of ozone on leaves photosynthesis. The latter simulated results are closer to experiment measurements through comparing their simulating results. At last the method of direct impacts of ozone on leaf growth is adopted and the coefficients about impacts of ozone on leaf growth and death are ascertained. Effects of climate changes, increasing ozone, and carbon dioxide concentration on agroecosystem are tried to be simulated numerically in the study which is considered to be advanced and credible.  相似文献   

12.
To evaluate the damaging effect of tropospheric ozone on vegetation, it is important to evaluate the stomatal uptake of ozone. Although the stomatal flux is a dominant pathway of ozone deposition onto vegetated surfaces, non-stomatal uptake mechanisms such as soil and cuticular deposition also play a vital role, especially when the leaf area index \({LAI}< 4\). In this study, we partitioned the canopy conductance into stomatal and non-stomatal components. To calculate the stomatal conductance of water vapour for sparse vegetation, we firstly partitioned the latent heat flux into effects of transpiration and evaporation using the Shuttleworth–Wallace (SW) model. We then derived the stomatal conductance of ozone using the Penman–Monteith (PM) theory based on the similarity to water vapour conductance. The non-stomatal conductance was calculated by subtracting the stomatal conductance from the canopy conductance derived from directly-measured fluxes. Our results show that for short vegetation (LAI \(=\) 0.25) dry deposition of ozone was dominated by the non-stomatal flux, which exceeded the stomatal flux even during the daytime. At night the stomatal uptake of ozone was found to be negligibly small. In the case of vegetation with \({LAI}\approx 1\), the daytime stomatal and non-stomatal fluxes were of the same order of magnitude. These results emphasize that non-stomatal processes must be considered even in the case of well-developed vegetation where cuticular uptake is comparable in magnitude with stomatal uptake, and especially in the case of vegetated surfaces with \({LAI}< 4\) where soil uptake also has a role in ozone deposition.  相似文献   

13.
小麦和水稻是世界最重要的粮食作物。利用河南省小麦和水稻的历史观测资料,结合DSSAT-CERES 小麦和ORYZA2000水稻模拟模型,分析和模拟河南省稻麦类作物在历史气候变化条件下发育期和产量的变化。结果表明:冬小麦全育期长度呈缩短趋势,但播种-越冬天数平均每10年增加1.7天,开花到乳熟天数平均每10年增加2-4天,返青后各发育期均表现出不同程度的提前;水稻各发育期均有不同程度的提前,尤其是拔节期以前,分蘖前的发育期间隔天数以缩短为主,拔节后以延长为主。雨养小麦模拟产量和水氮增产潜力均呈减少趋势;随着播种期的提前,水稻减产趋势逐渐减弱。  相似文献   

14.
O3浓度增加对冬小麦影响的试验研究   总被引:11,自引:2,他引:11  
利用OTC 1型开顶式气室对冬小麦进行不同O3 浓度处理的试验研究。结果表明 ,O3 浓度增加 ,冬小麦发育期表现为开花前期有所延迟 ,开花后期的各发育期明显提前 ,生育期缩短 ,植株矮化 ,干物质累积量明显下降。无论是长时期通气处理还是阶段性通气处理 ,产量均明显降低  相似文献   

15.
干旱胁迫对夏玉米叶片光合及叶绿素荧光的影响   总被引:4,自引:0,他引:4  
选用华北地区大面积种植的夏玉米品种郑单958、承玉2号、鲁单981作为试验材料,通过研究干旱胁迫条件下的玉米叶片光合、叶绿素荧光等指标随着土壤水分的动态变化规律,以期为夏玉米干旱的生理生态变化监测及水分高效利用提供理论依据。研究发现,在土壤含水量70%左右时,随着土壤相对湿度的下降,上述3个夏玉米品种仍能保持其叶片水分状态。郑单958、承玉2号、鲁单981的叶片净光合速率在土壤水分中等条件下最大,分别为39.9、38.8、38.4μmolCO2/m^2·s;在土壤相对湿度较低时,郑单958、承玉2号、鲁单981的叶片净光合速率下降趋势明显(P〈0.05)。叶片水势变化规律为:在土壤相对湿度〉90%时,对水分胁迫郑单958、承玉2号不敏感,鲁单981敏感;在土壤相对湿度〈70%时,水分胁迫条件下承玉2号不敏感,而鲁单981、郑单958敏感。气孔导度(g1)变化规律:随着水分胁迫加剧,3个夏玉米品种气孔导度均下降,在土壤水分较高时,气孔导度变化规律不明显,在土壤水分较低时,气孔导度明显下降(P〈0.01),细胞间隙CO2浓度(Ci)随土壤水分胁迫加剧而上升。上述结果表明:与叶片的光合和水分状况相比,夏玉米的气孔对土壤水分的匮缺更为敏感。  相似文献   

16.
河南省稻麦类作物对气候变化的响应   总被引:4,自引:1,他引:3  
小麦和水稻是世界最重要的粮食作物。利用河南省小麦和水稻的历史观测资料,结合DSSAT-CERES小麦和ORYZA2000水稻模拟模型,分析和模拟河南省稻麦类作物在历史气候变化条件下生育期和产量的变化。结果表明:冬小麦全生育期长度呈缩短趋势,但播种-越冬天数平均每10 a增加1.7 d,开花到乳熟天数平均每10 a增加2-4 d,返青后各生育期均表现出不同程度的提前;水稻各生育期均有不同程度的提前,尤其是拔节期以前,分蘖前的生育期间隔天数以缩短为主,拔节后以延长为主。雨养小麦模拟产量和水氮增产潜力均呈减少趋势;随着播种期的提前,水稻减产趋势逐渐减弱。  相似文献   

17.
稻茬冬小麦不同播种方式和播种量试验研究   总被引:1,自引:0,他引:1  
稻茬冬小麦不同播种方式和播种量试验于2008—2009年度在江苏省农业科技综合展示基地(宿迁点)进行,试验共设计4种播种方式和3个播种量水平,研究分析不同播种方式和播种量及气象条件对稻茬冬小麦生长发育、抗逆性和产量的影响。结果表明:播种方式和播种量对冬小麦的生长发育及产量有显著影响,在生产实际中应结合具体情况采取适当的播种方式,播种量水平以每亩20万株左右基本苗较理想。在粳稻收获较晚,冬小麦无法适期播种时,可以采取稻田套播方式,播种量要适当增加;籼稻腾茬早的,可以选择收获后7 d左右人工撒播或条播;在茬口和气候等条件适宜的情况下,尽可能采取水稻收获后2 d左右进行冬小麦播种。条播能更充分的利用光温水等气候资源。  相似文献   

18.
稻茬冬小麦不同播种方式和播种量试验于2008—2009年度在江苏省农业科技综合展示基地(宿迁点)进行,试验共设计4种播种方式和3个播种量水平,研究分析不同播种方式和播种量及气象条件对稻茬冬小麦生长发育、抗逆性和产量的影响。结果表明:播种方式和播种量对冬小麦的生长发育及产量有显著影响,在生产实际中应结合具体情况采取适当的播种方式,播种量水平以每亩20万株左右基本苗较理想。在粳稻收获较晚,冬小麦无法适期播种时,可以采取稻田套播方式,播种量要适当增加;籼稻腾茬早的,可以选择收获后7 d左右人工撒播或条播;在茬口和气候等条件适宜的情况下,尽可能采取水稻收获后2 d左右进行冬小麦播种。条播能更充分的利用光温水等气候资源。  相似文献   

19.
以甜椒"苏椒13号"品种为试材,于2009年在江苏南京设计不同彩色塑料薄膜(红、绿、黄、紫、蓝、无色(CK))覆盖处理试验,系统研究了不同光质对温室甜椒叶片光合作用特性的影响。结果表明:不同光质处理的甜椒叶片光补偿点和光饱和点分别在4560μmol.m-2.s-1和1 0001 200μmol.m-2.s-1范围内;红膜处理的单叶最大光合速率最高达8.4μmol.m-2.s-1,紫膜处理最低仅为2.89μmol.m-2.s-1;红膜和CK处理的甜椒叶片CO2饱和点明显高于紫膜和黄膜处理,所有处理的CO2补偿点均在100μmol.mol-1左右。CK的叶绿素含量最高,绿膜处理最低。不同色膜处理的晴天叶片净光合速率、气孔导度、蒸腾速率日变化均呈单峰型。除蓝膜外,其他色膜处理胞间CO2浓度日变化曲线均呈"W"型。水分利用效率日平均值以红膜处理最高、紫膜最低。气孔限制值以紫膜处理最高、红膜处理最低。红膜、黄膜处理可促进甜椒光合作用,而紫膜则具有明显的抑制作用。  相似文献   

20.
采用美国CI-301PS型便携式光合作用测定仪,对半干旱区大田春小麦的健康叶片和受条锈菌侵染后病叶的光合作用和蒸腾作用进行活体监测。结果表明:在干旱环境下。受条锈菌侵染后小麦叶片的光合作用和蒸腾作用发生了明显变化,其光合速率比健叶明显降低,而病叶细胞间隙CO2浓度、气孔导度、蒸腾速率等有所升高,且日变化随病叶严重度的不同而明显不同。受干旱和病原物侵染的双重胁迫,小麦叶片的光合效率显著降低,水分利用率也随之下降。不仅与叶绿素含量的明显下降有关,而且与干旱造成的水分亏缺对小麦体内生理生化代谢造成损伤,碳同化过程受到抑制等有着密切的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号