首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A polymeric hybrid composite system made of high-performance concrete (HPC) and an innovative carbon/epoxy reinforced polymer (CFRP) unidirectional laminates was proposed as a retrofit system to enhance flexural strength and ductility of reinforced concrete (RC) slabs. The effectiveness of the proposed system was confirmed through experimental evaluation of three full-scale one-way slabs having two continuous spans. In this study, the results of the loading tests for the hybrid high-performance retrofit system are presented and discussed. Design limits to derive a flexural failure of a continuous RC slab strengthened with the hybrid retrofit system are extracted. Using the proposed design limits, the procedure of a flexural failure design for a continuous RC slab strengthened with the hybrid retrofit system is demonstrated with numerical examples for two types of the retrofit systems with respect to overlay strength. The flexural failure design limits can be extended for flexural and shear strengthening design with externally bonded FRP to ensure flexure failure for a continuous flexural members.  相似文献   

2.
A recent technique for strengthening steel and steel-concrete composite structures by the use of externally bonded Fiber Reinforced Polymer (FRP) sheets, to increase the flexural capacity of the structural element, is described. Several researches developed FRP strengthening of reinforced concrete and masonry structures, but few experimental studies about steel and steel-concrete composite elements are available. Some examples of guidelines for the design and construction of externally bonded FRP systems for strengthening existing metal structures are available, but the method used to predict the flexural behaviour of FRP strengthened elements is usually based on the hypothesis of elastic behaviour of materials and FRP laminate is mainly considered only under the tensile flange. In this paper, an analytical procedure to predict the flexural behaviour of FRP strengthened steel and steel-concrete composite elements, based on cross-sectional behaviour and taking into account the non-linear behaviour of the materials with any configuration of FRP reinforcement, is given. Analytical predictions are compared with some experimental results available in the literature on the flexural behaviour of FRP strengthened steel and steel-concrete composite elements, showing good agreement of the results, even in the non-linear phase, until failure.  相似文献   

3.
The performance of various composite materials applied to strengthen hollow masonry panels under out-of-plane actions is compared here. The strengthening solutions belong to three reinforcement Externally Bonded (EB) wet lay-up systems: (i) bidirectional composite meshes applied with inorganic matrices, i.e., Textile Reinforced Mortars (TRM); unidirectional composite textiles applied with (ii) inorganic matrices, i.e., Steel Reinforced Grouts (SRG), or (iii) organic (epoxy) matrices, i.e., Fibre Reinforced Polymers (FRP), Steel Reinforced Polymers (SRP) and Natural FRPs. Carbon FRP, flax and hemp NFRP, and basalt and glass-based TRM were examined. As inorganic matrix, a cement-based mortar was used for TRMs; in the case of SRGs, comparisons with a magnesia-based matrix were also carried out. Twenty-seven specimens were subjected to simplified four-point monotonic bending tests, aimed at reproducing in the laboratory the failure condition of infill masonry walls under out-of-plane actions. The results are compared in terms of failure mode and mechanical improvement, and provide an analytical evaluation of moment–curvature behaviour according to bilinear laws.  相似文献   

4.
《Composites Part B》2007,38(5-6):781-793
This paper presents the results of an experimental investigation on shear strength enhancement of reinforced concrete beams externally reinforced with fiber-reinforced polymer (FRP) composites. A total of nine full-scale beam specimens of three different classes, as-built (unstrengthened), repaired and retrofitted were tested in the experimental evaluation program. Three composite systems namely carbon/epoxy wet layup, E-glass/epoxy wet layup and carbon/epoxy precured strips were used for retrofit and repair evaluation. Experimental results indicated that the composite systems provided substantial increase in ultimate strength of repaired and strengthened beams as compared to the pre-cracked and as-built beam specimens. A comparative study of the experimental results with published analytical models, including the ACI 440 model, was also conducted in order to evaluate the different analytical models and identify the influencing factors on the shear behavior of FRP strengthened reinforced concrete beams. Comparison indicated that the shear span-to-depth ratio (a/d) is an important factor that actively controls the shear failure mode of beam and consequently influences on the shear strength enhancement.  相似文献   

5.
双面叠合混凝土剪力墙由两侧预制混凝土板和中间后浇混凝土叠合层组成,具有整体性较好、大量节省模板和支撑、便于工业化生产、经济性好等优点,应用前景广阔。该文开展了剪力墙足尺模型的高轴压比下平面内和低轴压比下平面外低周反复荷载试验,对双面叠合剪力墙的抗震性能进行了研究与探讨。研究表明:双面叠合剪力墙在平面内和平面外低周反复荷载下的破坏形态与现浇剪力墙相同,均发生受弯破坏; 4片剪力墙滞回曲线特征相似,双面叠合剪力墙的耗能性能好于现浇剪力墙;双面叠合剪力墙的平面内承载力比现浇剪力墙高约5%,平面外承载力低约12%;平面内和平面外加载时双面叠合剪力墙均具有良好的延性,其延性系数分别为2.15和3.83,比现浇剪力墙分别高约25%和20%。双面叠合剪力墙基于规范计算值的抗弯及抗剪安全系数均达到1.1以上,双面叠合剪力墙破坏时其水平接缝处的剪力远小于其接缝抗剪承载力设计值。总体而言,双面叠合剪力墙具有良好的抗震性能,可在抗震设防地区推广应用。  相似文献   

6.
《Composites Part B》2007,38(2):172-181
High-performance fibers are being widely researched for repair and rehabilitation in civil engineering structures. The potential benefits, liabilities, and architectural considerations regarding the use of high-performance fibers for reinforcing wood beams are discussed. An experimental program based on a four- and three-point bending test configuration is proposed to characterize the stiffness and strength response of wood beams reinforced with pultruded GFRP (glass fibers reinforced polymers) elements. Improving wood mechanical characteristics through the use of fiber reinforced polymers often involves the use of adhesives, generally epoxy resins. For this reason mechanical, calorimetric and thermo-gravimetric analyses were performed on the resin utilized and bonding effectiveness was studied. Mechanical tests carried out on full-scale wood beams showed that the reinforcement with GFRP beams may produce strong increases in flexural stiffness and capacity. In addition, an analytical investigation based on a simple linear analysis was conducted to predict ultimate load. At the end of this paper results of the experimental program are presented and used for comparison with the analytical procedure.  相似文献   

7.
用钢纤维混凝土加固修复工程结构是一种提高其极限承载力和延性的有效方法。该文研究了钢纤维水泥砂浆加固砌体墙的平面外受力性能,试验了4个1000mm×1000mm×115mm的砌体墙,采用30mm厚、纤维体积含量分别为1.0%、1.5%、2.0%和2.5%的钢纤维水泥砂浆加固。试验结果表明:用体积含量为1.5%的钢纤维水泥砂浆加固效果最好;同时该文数值模拟了钢纤维水泥沙浆加固砌体墙的平面外极限承载力,数值模拟结果与试验结果吻合较好。  相似文献   

8.
In many experimental studies, it has been proved that unreinforced masonry (URM) brick walls have high strength against lateral forces acting in plane. However, out-of-plane strength of URM brick walls against lateral forces has found to be quite low. According to the experiences that were obtained from the major earthquakes, the low out-of-plane performance of URM brick walls resulted in excessive loss of human lives during an earthquake, hence the strengthening of URM brick walls with CFRP strips has been appeared to be a very important subject. However, very limited literature has been found. Especially, the data obtained from experimental studies must be increased for the true understanding of the behavior of strengthened brick walls under out-of-plane lateral forces. However, in most cases, this procedure required large number of expensive experiments. At this stage, numerical analysis can be an appropriate choice, thus in this paper a finite element model is presented for modeling URM brick walls that are strengthened with CFRP strips. The numerical results are compared with the experimental ones and consistent results are obtained from the finite element model. General purpose finite element analysis software ANSYS is used throughout this study. Contact elements are used along the masonry wall–CFRP strip interfaces for the investigation of the stress distribution and load – strain behavior.  相似文献   

9.
The out-of-plane behavior of unreinforced masonry walls strengthened with externally bonded fiber reinforced polymer (FRP) strips is analytically studied. The analytical model uses variational principles, equilibrium requirements, and compatibility conditions between the structural components (masonry units, mortar joints, FRP strips, and adhesive layers) and assumes one-way flexural action of the strengthened wall. The masonry units and the mortar joints are modeled as Timoshenko’s beams. The FRP strips are modeled using the lamination and the first-order shear deformation theories, and the adhesive layers are modeled as 2D linear elastic continua. The model accounts for cracking of the mortar joints and for the development of debonding zones near the cracked joints. Numerical and parametric studies that reveal the capabilities of the model, throw light on the interaction between the variables, and quantitatively explain some aspects of the behavior of the strengthened wall are also presented.  相似文献   

10.
An alternative to fiber reinforced polymer (FRP) materials adhesively bonded to the concrete substrate is the implementation of mechanically fastened FRP (MF-FRP) systems using steel anchors to secure the laminate to the substrate. The benefit of MF-FRP, compared to adhesive bonding for FRP flexural strengthening, is the speed of installation with unskilled labor, minimal or absent surface preparation under any meteorological condition and immediate use of the strengthened structures. Some of the potential shortcomings are: possible concrete damage during anchoring and limited opportunity of installation in the presence of congested internal reinforcement in the members to be strengthened. Laboratory testing and a number of field applications have shown the effectiveness of the MF-FRP method. In this paper, an analytical model is discussed for reinforced concrete (RC) members strengthened with MF-FRP strips. The model accounts for equilibrium, compatibility and constitutive relationships of the constituent materials; in particular, it accounts explicitly for the slip between the substrate surface and the FRP strip due to the behavior of the fasteners. The proposed flexural model, coupled with the computation algorithm, is able to predict the fundamentals of the behavior of RC flexural members strengthened with MF-FRP strips, in terms of both ultimate and serviceability limit states. Comparisons between the analytical predictions and the experimental results have been successfully performed.  相似文献   

11.
The vulnerability of masonry infill walls has been highlighted in recent earthquakes in which severe in-plane damage and out-of-plane collapse developed, justifying the investment in the proposal of strengthening solutions aiming to improve the seismic performance of these construction elements. Therefore, this work presents an innovative strengthening solution to be applied in masonry infill walls, in order to avoid brittle failure and thus minimize the material damage and human losses. The textile-reinforced mortar technique (TRM) has been shown to improve the out-of-plane resistance of masonry and to enhance its ductility, and here an innovative reinforcing mesh composed of braided composite rods is proposed. The external part of the rod is composed of braided polyester whose structure is defined so that the bond adherence with mortar is optimized. The mechanical performance of the strengthening technique to improve the out-of-plane behaviour of brick masonry is assessed based on experimental bending tests. Additionally, a comparison of the mechanical behaviour of the proposed meshes with commercial meshes is provided. The idea is that the proposed meshes are efficient in avoiding brittle collapse and premature disintegration of brick masonry during seismic events.  相似文献   

12.
Near surface mounted (NSM) and externally bonded reinforcement (EBR) strengthening techniques are based on the use of carbon fiber reinforced polymer (CFRP) materials and have been used for the structural rehabilitation of concrete structures. In the present work, the efficacies of the NSM and EBR techniques for the flexural and shear strengthening of reinforced concrete beams are compared carrying out two experimental groups of tests. For the flexural strengthening, the efficacy of applying CFRP laminates according to NSM is compared to those resulting from applying CFRP laminates and wet lay-up CFRP sheets according to EBR technique. The influences of the equivalent reinforcement ratio (steel and laminates) and spacing of the laminates on the efficiency of the NSM technique for the flexural strengthening is also investigated. A numerical strategy is implemented to analyze the applicability of the FRP effective strain concept, proposed by ACI and fib in the design of FRP systems for the flexural strengthening. To assess the efficacy of the NSM technique for the shear strengthening of concrete beams, four beam series of distinct depth and longitudinal tensile steel reinforcement ratio are tested. Each series is composed of one beam without any shear reinforcement and one beam using the following shear reinforcing systems: conventional steel stirrups; strips of wet lay-up CFRP sheet of U configuration applied according to EBR technique; and laminates of CFRP embedded into vertical or inclined (45°) pre-cut slits on the concrete cover of the beam lateral faces, according to the NSM technique. Using the obtained experimental results, the performance of the analytical formulations proposed by ACI, fib and Italian guidelines is appraised.  相似文献   

13.
The preservation of the architectural heritage presents one of the important challenges in civil engineering due to the complexity of the geometry of the structures, the variability of the materials used and the loading history of the buildings. This objective increases for existing constructions in the seismic area. External bonding of fiber or, more recently, steel reinforced polymer composites has become a popular technique for strengthening historic monumental masonry buildings. The performance of the interface between composites and masonry is one of the key factors affecting the behaviour of strengthened structures: shear walls, arches and vaults. This paper aims to present the results of an experimental study to evaluate the bond between fiber reinforced polymer (FRP) – glass and carbonFRP – and steel reinforced polymer (SRP) with historic masonry: pull–push shear tests on FRP/SRP-to-historic brick bonded joints specimens were carried out. Modes of failure are discussed in detail and analytical results are compared with experimental data. Experimental strains recorded on FRP/SRP strips were processed to evaluate shear–slip laws of tested specimens; energy fracture and failure load values are compared with theoretical values by simplified models for shear stress–slip. Finally, a simple model of FRP/SRP design suitable for practical application to historic masonry is proposed.  相似文献   

14.
《Composites Part B》2000,31(6-7):445-452
Four full-scale reinforced concrete beams were replicated from an existing bridge. The original beams were substantially deficient in shear strength, particularly for projected increase of traffic loads. Of the four replicate beams, one served as a control and the remaining three were implemented with varying configurations of carbon fiber reinforced polymers (CFRP) and glass FRP (GFRP) composites to simulate the retrofit of the existing structure. CFRP unidirectional sheets were placed to increase flexural capacity and GFRP unidirectional sheets were utilized to mitigate shear failure. Four-point bending tests were conducted. Load, deflection and strain data were collected. Fiber optic gauges were utilized in high flexural and shear regions and conventional resistive gauges were placed in eighteen locations to provide behavioral understanding of the composite material strengthening. Fiber optic readings were compared to conventional gauges.Results from this study show that the use of fiber reinforced polymers (FRP) composites for structural strengthening provides significant static capacity increases approximately 150% when compared to unstrengthened sections. Load at first crack and post cracking stiffness of all beams was increased primarily due to flexural CFRP. Test results suggest that beams retrofit with both the designed GFRP and CFRP should well exceed the static demand of 658 kN m sustaining up to 868 kN m applied moment. The addition of GFRP alone for shear was sufficient to offset the lack of steel stirrups and allow conventional RC beam failure by yielding of the tension steel. This allowed ultimate deflections to be 200% higher than the pre-existing shear deficient beam. If bridge beams were retrofit with only the designed CFRP failure would still result from diagonal tension cracks, albeit at a 31% greater load. Beams retrofit with only the designed shear GFRP would fail in flexure at the mid-span at an equivalent 31% gain over the control specimen, failing mechanism in this case being yielding of the tension steel. Successful monitoring of strain using fiber optics was achieved. However, careful planning tempered by engineering judgement is necessary as the location and gauge length of the fiber optic gauge will determine the usefulness of the collected data.  相似文献   

15.
Fiber-reinforced polymer (FRP) composite wraps have been established as an effective method for rehabilitation and strengthening of concrete structures. They are being increasingly used as an alternative to steel for reinforcing and strengthening of concrete structures. This paper presents the experimental and analytical results of the influence of concrete surface treatment and the type of FRP sheets on the bonding strength of concrete-FRP sheet. The FRP sheets were bonded to concrete beams in two opposite sides using an epoxy resin. Variables included the type of fiber (C1, C5, and GE) and the surface treatment (water jet and sanding). With changing the surface treatment of concrete surface preparation and the type of fiber sheets, the bonding strength, bonding load–strain response and failure modes were investigated. The concrete specimens with surface roughened with water jet showed much better bonding strength than those roughened with an ordinary sander. Equations for predicting the bond load failure of concrete specimens externally bonded with carbon and glass fiber sheets compared well with those of experimental.  相似文献   

16.
Externally bonded fiber reinforced polymers (FRP) has been established as an effective technique for strengthening concrete members. Other techniques, like near surface mounted (NSM) FRP bars, and steel reinforced polymers (SRP) have emerged as viable alternatives. In this study, four composite-based strengthening systems were used to provide equivalent flexural performance, namely: externally bonded CFRP sheets, NSM prefabricated CFRP strips, externally bonded SRP sheets and NSM stainless steel bars. The strengthening design was based on achieving approximately 38% increase in flexural capacity over the unstrengthened control beams. The mode of failure by design was brittle failure controlled by concrete crushing at 0.003 strain. However, the experimental program was designed to demonstrate the effectiveness of transverse anchoring reinforcement to control premature debonding failure modes and fully utilize the high strength of the composite systems. A more ductile behavior was also observed as a result of transverse strengthening and concrete confinement effects. Accordingly, an increase of approximately 50% in flexural strength is accomplished.  相似文献   

17.
There are three principal techniques available for strengthening RC columns: concrete jacketing, steel jacketing and composite jacketing (FRP). Steel caging is a variation of the steel jacketing technique and is recognised as being easy to apply and relatively inexpensive. This paper presents a new design proposal that provides a means of calculating the ultimate load of an axially loaded RC column strengthened by steel caging. The formulation of the new proposal is based on the analysis of the failure mechanisms derived from experimental and numerical studies performed on full-scale specimens. The results provided by the application of the new design proposal are compared with those from laboratory tests on full-scale strengthened columns and FE models and are seen to be much more effective than results obtained from other proposals.  相似文献   

18.
《Composites Part B》2013,45(1):604-612
This paper presents experimental research on reinforced concrete (RC) beams with external flexural and flexural–shear strengthening by fibre reinforced polymer (FRP) sheets consisting of carbon FRP (CFRP) and glass FRP (GFRP). The work carried out has examined both the flexural and flexural–shear strengthening capacities of retrofitted RC beams and has indicated how different strengthening arrangements of CFRP and GFRP sheets affect behaviour of the RC beams strengthened. Research output shows that the flexural–shear strengthening arrangement is much more effective than the flexural one in enhancing the stiffness, the ultimate strength and hardening behaviour of the RC beam. In addition theoretical calculations are developed to estimate the bending and shear capacities of the beams tested, which are compared with the corresponding experimental results.  相似文献   

19.
Carbon and glass fiber reinforced polymer (CFRP and GFRP) are two materials suitable for strengthening the reinforced concrete (RC) beams. Although many in situ RC beams are of continuous constructions, there has been very limited research on the behavior of such beams with externally applied FRP laminate. In addition, most design guidelines were developed for simply supported beams with external FRP laminates. This paper presents an experimental program conducted to study the flexural behavior and redistribution in moment of reinforced high strength concrete (RHSC) continuous beams strengthened with CFRP and GFRP sheets. Test results showed that with increasing the number of CFRP sheet layers, the ultimate strength increases, while the ductility, moment redistribution, and ultimate strain of CFRP sheet decrease. Also, by using the GFRP sheet in strengthening the continuous beam reduced loss in ductility and moment redistribution but it did not significantly increase ultimate strength of beam. The moment enhancement ratio of the strengthened continuous beams was significantly higher than the ultimate load enhancement ratio in the same beam. An analytical model for moment–curvature and load capacity are developed and used for the tested continuous beams in current and other similar studies. The stress–strain curves of concrete, steel and FRP were considered as integrity model. Stress–strain model of concrete is extended from Oztekin et al.’s model by modifying the ultimate strain. Also, new parameters of equivalent stress block are obtained for flexural calculation of RHSC beams. Good agreement between experiment and prediction values is achieved.  相似文献   

20.
Application of fiber reinforced polymer (FRP) composite plates to strengthen the capbeam of Pier 3 of East Church Street Bridge in Chemung County, New York, is discussed in this paper. Addition of a concrete wearing surface and a median barrier to the bridge superstructure increased dead load, contributing to deficiencies in moment and shear capacities of the capbeam structure. As a result, the concrete capbeam suffered flexural and shear cracking, and was considered for strengthening using bonded FRP composite plates. Service load tests were performed before and after the plates were installed, to investigate effectiveness of the strengthening system. Installation of the plates and results from the performed load tests related to flexural behavior of the beam are discussed in the paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号