首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高能级强夯法在处理湿陷性黄土地基中的应用   总被引:2,自引:0,他引:2  
马安刚 《建筑技术》2001,32(3):166-167
高能级强夯一般指每单击夯击能大于6000kN·m强夯 ,用其加固处理大厚度湿陷性黄土地基 ,对提高地基土强度和均匀性 ,消除湿陷性具有明显的效果。施工工艺和参数的选择对强夯效果影响很大。施工中对夯击裂缝和夯击能分配问题应认真处理  相似文献   

2.
针对填海工程大厚度碎石回填地基,开展了3000k N·m、6000k N·m和10000k N·m的高能级强夯现场试验,通过夯前、夯后现场超重动力触探试验、瑞雷波检测和夯后平板载荷试验结果的对比分析,确定出不同夯击能下强夯的影响深度和地基加固效果。综合分析认为,3000k N·m夯击能影响深度约为6m,承载力特征值为180k Pa;6000k N·m夯击能影响深度为6~9m,承载力特征值为200k Pa;10000k N·m夯击能影响深度为9~12m,承载力特征值为200k Pa。试验结果可为同类地区高能级强夯工程提供参考。  相似文献   

3.
采用高能级强夯处理深厚回填土地基时,可提高地基土的强度和均匀性,降低压缩性,减小沉降量,消除液化和湿陷性等。目前对高能级强夯有效加固深度的研究尚未成熟,规范给出的经验公式又不适用,因此进行高能级强夯有效加固深度计算方法和影响因素研究非常必要。本文针对在碎石土、湿陷性黄土、砂土三种回填土地基上进行的高能级强夯试验,采用平板载荷试验、动力触探试验、瑞利波测试方法研究强夯前、强夯后浅层地基承载力和深层密实度的变化,提出考虑土类别的高能级强夯有效加固深度计算公式,并得到了修正系数取值表。通过分析夯点间距、锤底面积对不同回填土地基有效加固深度的变化规律,得到高能级强夯优化设计参数,可为工程实践提供参考。  相似文献   

4.
对黄土塬某工程的湿陷性黄土地基采用15 000 kN·m高能级强夯加固处理.通过探井取样与室内土工试验、静力触探试验、浅层平板载荷试验3种方法对强夯处理效果进行综合检测和研究,得出15 000 kN·m高能级强夯加固湿陷性黄土地基的有效加固深度.试验表明,强夯处理后消除湿陷性效果显著,地基土承载力明显提高.  相似文献   

5.
通过碎石土回填地基采用高能级强夯技术的工程实例,得到了大量的静载试验、动力触探等现场实测数据,比较完整地反映了12000kN.m高能级强夯的加固效果,分析比较了碎石填土地基夯前和夯后的土工性能指标、地基承载力及变形模量。研究表明,深度12m以内各土层的地基承载力均具有较大幅度的提高,可为其它工程高能级强夯技术的施工、检...  相似文献   

6.
为了探讨山谷型与滨海型两种不同土质条件下碎石回填地基的强夯加固效果,开展了8000kN·m能级的现场强夯对比试验;同时考虑滨海大型工程建设地基处理施工的需要,在沿海地区实施了10000,15000kN·m高能级强夯的现场试验。通过对各场地不同能级试夯前后地基动力触探与静力载荷试验结果的分析与对比研究,得出如下结论:①采用8000kN·m夯击能处理山谷型厚层碎石回填地基,其有效加固深度可达10.0~11.5m;处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为8.5~9.0m;②采用10000kN·m夯击能处理滨海山前厚层碎石回填地基,其有效加固深度为12~12.5m;③采用15000kN·m夯击能处理滨海型下卧软弱夹层且存在地下水的碎石回填地基,其有效加固深度为11.5m;④若采用梅纳公式的修正形式预估强夯的有效加固深度,其修正系数取值范围建议为0.29~0.40;对于软弱下卧层浅、高地下水等不利情况应取低值,对于回填碎石层厚、且级配较好时可取高值。  相似文献   

7.
滨海含软土夹层粉细砂地基高能级强夯加固试验研究   总被引:1,自引:0,他引:1  
滨海粉细砂场地地基常分布有软土夹层或淤泥包且地下水位较高,地基处理难度大。目前采用高能级强夯加固滨海粉细砂场地的工程案例较少。结合具体工程研究了某地下水位较高且含软土夹层的滨海粉细砂场地上开展的5、8、12、15MN·m能级强夯加固试验。除5MN·m能级强夯试验区外,其余试验区均先采取高能级点夯加固深层土体,然后采用中等能级点夯加固夯点间土,最后利用低能级满夯加固地基浅层。对比分析了夯沉量和强夯前后的旁压、静力触探测试数据,发现夯击7~8击后夯沉量变化明显减小,每遍的单点夯击击数宜控制在8~9;在有效加固深度范围内,土体的旁压模量和静力触探锥尖阻力均明显提升,高能级强夯能有效消除滨海粉细砂的液化势。试验场地内上述各个能级的有效加固深度分别为7.5、9、10.5、10m,在有效加固深度范围内,表征土体相对加固程度的提升系数沿深度大致呈直线下降。现场试验数据还表明,将地下水位降低到距地表以下2.5m有助于提高加固效果;软土夹层的存在会明显影响加固效果及限制有效加固深度的发展,因受软土夹层的影响,场地15MN·m能级强夯的有效加固深度明显偏小。建议在级配不良的滨海粉细砂场地上按照规范JGJ 79—2012中细颗粒土的标准来确定高能级强夯的有效加固深度。  相似文献   

8.
采用8000kN.m高能级强夯处理湿陷等级为Ⅲ~Ⅳ级的大面积湿陷性黄土地基,对其设计、施工和检测进行了系统全面的实践研究。通过瑞利波波速测试、标准贯入试验、室内土工试验和静力载荷试验等对强夯处理湿陷性黄土的效果进行了综合检测,对比分析了强夯前后地基土物理力学指标、地基承载力和湿陷性的变化情况,确定有效加固深度、湿陷性消除、地基承载力等均满足设计要求,可为其他高能级强夯处理湿陷性黄土工程的设计、施工、检测提供参考。  相似文献   

9.
江苏LNG项目强夯地基处理试验的研究   总被引:1,自引:0,他引:1  
针对目前强夯的理论和工程实践还不成熟和完善,本文通过对江苏LNG项目强夯施工后的现场试验结果的分析与研究,得出以下结论:①强夯能级为6000kN·m,点夯能级为6000kN·m,满夯夯击能为1500kN·m;②夯点采用正方形布置,其间距为7m×7m,夯击数8击~10击;③强夯处理后,场地地基承载力特征值fak≥15kPa,土的压实系数λ≥0.95。  相似文献   

10.
《工程勘察》2021,49(10):40-43
以四川省西昌市某饱和土场地地基处理为例,采用碎石桩+强夯的处理方式。在试夯区中心位置不同深度的土层中埋设孔压传感器,通过观测不同点位夯击施工过程中,试夯区中心位置不同深度土层中孔隙水压力的变化规律,得出该场地强夯施工的有效影响深度约为9m,在一遍夯击过程中夯点间距不宜小于8m,可为类似场地强夯处理方案设计中合理确定加固深度及夯点间距提供借鉴。  相似文献   

11.
基于相似原理,通过室内模型试验,研究了湿陷性黄土地基中高能级强夯作用下动应力的传播规律,研究结果表明:(1)在强夯夯击数较小时,低能级强夯的动应力略高于高能级强夯;随着强夯夯击数增加,高能级强夯的动应力明显大于低能级强夯,高能级强夯的优势逐渐显现,其加固效果明显优于低能级强夯;(2)强夯夯击数增加到一定程度后,在地基土某一深度以上,虽然高能级强夯的动应力远大于低能级强夯的动应力,但衰减的速度很快,而在该深度以下,高能级强夯的动应力和低能级强夯的动应力相差不再悬殊;(3)高能级强夯处理过的地基土从上到下可以分为3个区域,即松弛区域、加固区域和弹性区域。  相似文献   

12.
《安徽建筑》2019,(8):132-134
柱锤强夯采用超深挤密强夯锤、履带式旋转吊机和自动脱钩装置,根据不同的地形选用不同的夯击能,用低能级的强夯可以达到中高能级普通强夯处理效果,该法能同时对深层、中层和浅层松软土质进行处理,可大大提高处理后地基土的承载力和有效加固深度,具有提高地基承载力、减少不均匀沉降等效果。文章结合实例分析柱锤强夯在市政道路工程中的设计与应用。  相似文献   

13.
《门窗》2014,(11)
结合某工程原土与回填土中强夯地基处理工程的设计参数及试夯方案,针对原土与回填土中强夯能级、布点形式、夯击次数、布点间距,对地基承载力及消除地基黄土湿陷性进行研究,供同类工程参考。  相似文献   

14.
沙晓军 《工业建筑》2012,(Z1):665-669
对6000,8000kN.m能级强夯处理湿陷性黄土地基的设计、施工、检测进行全面研究,通过对夯前、夯后标贯击数、干密度、湿陷性系数、压缩系数、承载力、沉降量等参数的分析,得出强夯处理效果以及有效加固深度。  相似文献   

15.
高能级强夯法是解决深厚杂填土地基承载力不足和工后沉降问题的重要工程手段之一。鉴于现有研究中对深厚杂填土地基的高能级强夯参数、夯实加固特征少有探讨,理论成果、工程经验不足,使杂填土在山区大型填方工程中的推广使用严重受限,以某高填方机场工程为依托,围绕厚层杂填土地基开展了多组现场高能级(12 000 kN·m)强夯试验,揭示了杂填土地基的强夯加固机理并结合多种现场检测试验对夯实效果、夯密特征进行了对比,为深厚杂填土地基强夯参数和夯实检验方法的选择指明了方向。结果表明:卵砾石-深厚杂填土地基在12 000 kN·m高能级强夯作用下,土性明显改善;在“主夯16-加固夯14-满夯5”单点夯击次数下浅表卵砾石层的夯实、整体地基土层均匀性的改良以及工程节支方面明显优于“主夯10-加固夯12-满夯3”强夯方案;存在最佳单点夯击次数,当夯击数超过这一数值时,额外的夯击对地基土性改良不利;杂填土地基由于成分复杂、空间高度不连续,现场波速试验不适用于此类地基土层质量的检测;受土性影响,杂填土地基夯密收敛标准略高于行业规范中的一般规定,为满足场地地基密实度要求,厚层杂填土地基强夯工艺须满足最后两击平均夯沉量不大于0.1 m、浅表卵砾石垫层固体体积率不小于85%、夯后杂填土密实度为密实及以上。最后,结合试验结果对强夯方案进行了优化,得到了深厚杂填土地基高能级强夯处理的推荐参数和现场检测方案。  相似文献   

16.
针对沿海回填超厚碎石土地基,结合工程实例,通过现场单点夯击试验、群点夯击试验,总结确定25 000 k N·m超高能级强夯的施工参数,通过不同的强夯能级组合及振动碾压,实现超厚碎石土地基的有效加固,满足地基承载力的设计要求,形成成熟的沿海回填超厚碎石土地基施工技术。  相似文献   

17.
洛阳石化总厂化纤工程4.6万m2地基强夯处理   总被引:4,自引:0,他引:4       下载免费PDF全文
苏冰 《岩土工程学报》2001,23(2):221-226
介绍了采用高能级强夯法处理湿陷性黄土地基的工程实例。从夯后地基检测、基坑验槽和重大构筑物沉降观测等方面分析表明 ,强夯地基加固效果显著 ,地基处理成功 ,揭示了夯后地基土沿深度的强度变化规律 ,并分析了地基在荷载作用下的变形特点。  相似文献   

18.
灰土挤密桩法和强夯法处理湿陷性黄土地基的效果对比   总被引:1,自引:0,他引:1  
为研究不同方法对湿陷性黄土地基的处理效果,结合平阳高速公路建设实例,介绍了灰土挤密桩法和强夯法在湿陷性黄土地基处理中的应用,并且通过室内试验分析比较地基加固前后的物理力学指标变化值,对单击夯击能为1 000,2 000kN·m的强夯法和灰土挤密桩法处理湿陷性黄土路基的效果进行了对比.结果显示,这两种不同能级的强夯处理和灰土挤密桩法都可以提高土体的物理力学性能、消除湿陷性,且2 000kN·m单击夯击能的强夯处理效果最佳,灰土挤密桩法效果次之,1 000kN·m单击夯击能的强夯处理效果最不显著.  相似文献   

19.
针对沿海下卧软弱夹层、高地下水位的厚层碎石回填地基,开展了3个试验区的强夯系列试验与对比研究。试验区A:14000,10000和8000 kN.m能级单点夯试验;相同能级(6000 kN.m)、不同压强夯锤对比试验,即34 kPa(18 t),50 kPa(25 t)和90 kPa(46 t)夯锤单点夯。试验区B:12000 kN.m能级强夯群夯试验。试验区C:15000 kN.m能级强夯群夯试验。通过现场圆锥动力触探试验、标准贯入试验与钻孔取样室内土工试验,对同一能级强夯前后、不同能级夯后的地基承载力进行对比分析,给出了沿海复杂地质条件下碎石回填地基上不同夯击能的有效加固深度及梅纳深度公式的修正系数,为同类地区高能级强夯工程的设计、监测与检测提供了参考。  相似文献   

20.
我们在某电厂工程中用强夯法处理浅层湿陷性黄土地基,收到了满意的效果。地基承载力由13tf/m~2提高到20tf/m~2以上,湿陷性全部消除,干容重由1.4g/cm~3提高到1.753g/cm~3,压缩模量由34.8kgf/cm~2提高到141kgf/cm~2,满足了工程要求。本工程主厂房等主要建筑物的持力层是饱和软塑—流塑的亚粘土,地下水位埋深-5.3~-5.5m。地基须进行人工加固处理。依当地条件经比较决定采用强夯法进行地基处理。一、工程试验1.夯击能的选择由于是加固饱和软粘土层,且深度较大,故以取  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号