首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
罗兴  何敏 《塑料》2020,49(2):7-9,13
采用熔融共混技术制备了长玻璃纤维增强聚丙烯/膨胀阻燃剂/有机蒙脱土(LGFPP/IFR/OMMT)复合材料。利用极限氧指数(LOI)、锥形量热仪(CONE)以及万能力学试验机,表征了LGFPP/IFR/OMMT复合材料的阻燃性能、燃烧性能以及力学性能。氧指数测试结果表明,OMMT使LGFPP/IFR体系的氧指数提高。当添加2%OMMT时,LGFPP/IFR/OMMT复合材料的氧指数提高至24.2%。锥形量热仪测试结果表明,LGFPP/IFR体系的热释放速率峰值(PHRR)、烟雾生产率(THR)及引燃时间(TTI)均由于添加OMMT而大幅度降低。力学性能测试结果表明,LGFPP/IFR体系的拉伸强度、弯曲强度以及缺口冲击强度因OMMT的添加,分别提高了8.15%、9.04%和24%,使LGFPP/IFR体系中由于IFR引起LGFPP力学性能降低的弊端得到了明显改善。  相似文献   

2.
采用膨胀阻燃体系(IFR)对聚甲醛(POM)进行阻燃改性,研究了不同阻燃体系的阻燃效果、熔体流动速率和力学性能。结果表明,膨胀阻燃体系能显著提高POM阻燃性能,且POM/红磷/聚酯型聚氨酯/三聚氰胺尿酸盐=65/20/10/5时,综合效果最佳,可以达到离火自熄,点燃过程中形成的炭层明显,而且力学性能降低最少,加工性能最好,增容剂KT 3对体系的增容效果最明显,力学性能最佳。  相似文献   

3.
采用自制的无卤阻燃剂(IFR)对30%玻纤增强尼龙6复合材料进行阻燃改性,研究了IFR的不同加入量对复合材料阻燃性能、力学性能以及热性能的影响。结果表明:当IFR加入量为25%时.阻燃复合材料的极限氧指数(LOI)达到31,阻燃级别为V-0级,而拉伸强度为78.86MPa,冲击强度为5.06kJ/m^2,材料综合性能比较优异。热重分析(TGA)数据表明,IFR的加入,改变了复合材料的热分解行为,改善了成炭效果。  相似文献   

4.
采用兼具阻燃和成炭作用的笼状磷酸酯三(1-氧代-1-磷杂-2,6,7-三氧杂双环[2.2.2]辛烷-4-亚甲基磷酸酯)(trimer)和微胶囊红磷(MRP)复配阻燃聚甲醛(POM)。采用垂直燃烧试验、极限氧指数和热重分析研究复配阻燃体系对POM的阻燃性能,并对阻燃POM的力学性能进行分析。结果表明,trimer和MRP有很好的协同阻燃性能;trimer/MRP/ME的添加量为23 %时,阻燃聚甲醛达到UL 94 V-0,极限氧指数最高达29.4 %。  相似文献   

5.
用熔融共混法制备了长玻纤增强聚丙烯/膨胀阻燃剂/多壁碳纳米管(LGFPP/IFR/MWNT)复合材料。通过极限氧指数、垂直燃烧测试、热失重分析、力学性能测试等手段研究了MWNT对LGFPP/IFR的阻燃性能、热性能和力学性能的影响。结果表明,MWNT的加入提高了LGFPP/IFR阻燃体系的阻燃性能,在LGFPP/IFR阻燃体系中添加1%MWNT后,LGFPP/IFR/MWNT复合材料的氧指数提高到23.5%;MWNT可显著增加LGFPP/IFR的热稳定性,添加1%MWNT可使LGFPP/IFR热分解起始温度提高12.34℃;MWNT的加入还提高了LGFPP/IFR阻燃体系的力学性能,在LGFPP/IFR阻燃体系中添加1%MWNT后,LGFPP/IFR/MWNT复合材料的拉伸强度、弯曲强度和冲击韧性分别提高了5.7%、12.7%和1.0%。  相似文献   

6.
采用膨胀型阻燃剂(IFR)及协效剂海泡石(SP)对长玻璃纤维增强聚丙烯(PP/LGF)复合材料进行阻燃,通过双螺杆挤出机制备了PP/LGF母粒,IFR母粒和SP母粒,然后将这3种母粒通过注塑机制备了PP/LGF/IFR/SP复合材料,通过极限氧指数(LOI)、垂直燃烧测试、锥形量热仪、热重分析、扫描电子显微镜、力学性能测试等表征PP/LGF各阻燃复合体系的性能。结果表明,当IFR质量分数为22%时,PP/LGF/IFR阻燃复合材料的LOI为28.8%,且垂直燃烧等级达到V–0级;锥形量热仪测试结果表明加入IFR及SP后阻燃复合体系的第一热释放速率峰值降低,而第二热释放速率峰消失;SP质量分数为1%,IFR质量分数为21%的PP/LGF/IFR/SP阻燃复合材料LOI为29.6%,垂直燃烧等级达到V–0级,热释放速率峰值和总热释放量得到有效降低,热稳定性最好,且燃烧时产生致密的炭层覆盖于玻璃纤维表面,同时加入1%SP后复合材料的力学性能下降幅度相对较小。  相似文献   

7.
研究硅胶(SG)作为协效剂与IFR协同阻燃LGF/PP复合材料的性能。通过极限氧指数(LOI)、垂直燃烧(UL-94)、锥形量热仪(CONE)、热重分析法(TG)、扫描电子显微镜(SEM)、力学性能等测试表征LGF/PP/IFR/SG阻燃复合体系的性能。结果表明:当硅胶用量为2%时,阻燃复合材料的LOI为29.4%,且燃烧等级达到V-0级;CONE测试结果表明LGF/PP/IFR/SG阻燃复合材料的第一热释放速率峰值降低,而第二热释放速率峰消失;LGF/PP/IFR/SG阻燃复合材料具有较好的热稳定性,且产生致密均匀的炭层;并研究硅胶用量对复合材料力学性能的影响。  相似文献   

8.
有机硅改性环糊精在膨胀阻燃聚丙烯中协同作用的研究   总被引:1,自引:0,他引:1  
王环峰  李斌 《中国塑料》2008,22(12):33-37
以1,1,3,3-四甲基二硅氧烷、烯丙基缩水甘油醚、β-环糊精(β-CD)为原料合成了一种新型有机硅改性环糊精(CDS)。红外光谱测试表明,环糊精接枝到硅氢加成反应制得的聚合物链端。利用热重分析、氧指数测试、垂直燃烧、扫描电镜分析等手段对比探讨聚丙烯(PP) /膨胀阻燃剂(IFR) /β-CD和PP/IFR/CDS复合材料热失重行为、阻燃性能、微观结构及力学性能。结果表明,IFR/CDS具有良好的协同阻燃作用,同时提高了材料的力学性能。当CDS含量为1.5 %(质量分数,下同)时,PP/IFR/CDS复合材料的极限氧指数为35.0 %, 垂直燃烧通过UL94 V-0测试,拉伸强度、弯曲强度和冲击强度分别比PP/IFR/β-CD复合材料提高了8.6 %、16.8 %和70.7 %。  相似文献   

9.
膨胀型阻燃剂和有机蒙脱土协同阻燃聚丙烯的研究   总被引:3,自引:0,他引:3  
李莹  王向东 《中国塑料》2010,24(7):87-91
采用熔融插层法制备了聚丙烯/膨胀型阻燃剂/有机蒙脱土(PP/IFR/OMMT)阻燃复合材料。探讨了OMMT对PP膨胀阻燃体系的影响,通过X射线衍射(XRD)、极限氧指数、热重分析(TG)、力学性能测试对阻燃复合材料的阻燃性、热稳定性及力学性能进行了研究。结果表明,PP高分子链插层进入OMMT层间,形成了插层型复合材料。OMMT与IFR具有明显的协同阻燃性。OMMT添加量为2份时,复合材料的极限氧指数达到31 %,较单独添加IFR时高出30 %;与纯PP相比,复合材料残炭率明显提高。随着OMMT含量的增加,复合材料的拉伸强度、弯曲强度和冲击强度均呈现先上升后下降的趋势,当OMMT含量为3份、IFR含量为22份时,复合材料的拉伸强度、弯曲强度和冲击强度达到最大值。  相似文献   

10.
通过熔融共混法制备了长玻纤增强聚丙烯/膨胀阻燃剂/硼酸锌(LGFPP/IFR/ZnB)复合材料,并测定了其阻燃性、热稳定性及力学性能;通过扫描电镜(SEM)观察燃烧后的微观形貌,考察了ZnB对LGFPP/IFR阻燃体系性能的影响。结果表明:适当用量的ZnB与IFR阻燃剂具有协同阻燃作用,可提高LGFPP/IFR体系的阻燃性、热稳定性及力学性能。在LGFPP/IFR阻燃体系中添加2%的ZnB,LGFPP/IFR/ZnB复合材料的氧指数提高到23.6%;拉伸强度、弯曲强度和冲击强度分别提高了10.7%、15.1%和31.9%。  相似文献   

11.
通过熔融共混和模压成型技术制备了聚对苯二甲酸丁二酯(PBT)/膨胀型阻燃剂(IFR)共混和层状复合材料,其中层状复合材料为3层阻燃结构,内层为非阻燃层(纯PBT),内层外面两层为阻燃层(PBT/IFR)。通过UL94垂直燃烧、极限氧指数(LOI)以及拉伸和冲击性能测试对比分析了两种复合材料的阻燃性能和力学性能。结果表明,与PBT/IFR共混复合材料相比,PBT/IFR层状复合材料的阻燃性能提高幅度更大,虽然低IFR含量下其力学性能低于共混复合材料,但随着IFR含量增加,力学性能下降幅度更小。当层状复合材料中的阻燃层/非阻燃层/阻燃层的厚度比为1.5 mm/1 mm/1.5 mm,即IFR质量分数为22.5%时,其拉伸强度、断裂伸长率和冲击强度与相同IFR用量下的共混复合材料相当,而阻燃性能与IFR质量分数为30%的共混复合材料相当,其UL 94阻燃等级达到V–0级,LOI提高到24.4%。这表明,采用层状阻燃可控受限结构,可在较低的IFR用量下更好地提高PBT/IFR复合材料的阻燃性能,同时减缓了力学性能下降的幅度。  相似文献   

12.
不同增韧体系阻燃聚丙烯的制备和性能研究   总被引:1,自引:0,他引:1  
通过高温预混制备了膨胀型阻燃剂(IFR),以马来酸酐接枝聚丙烯(PP-g-MAH)为增容剂,选用SBS、EVA、CPE、MBS分别对PP进行增韧改性,采用熔融插层法制备了阻燃聚丙烯(FRPP)。用TGA、LOI、SEM和力学性能测试等研究了不同种类的增韧剂对阻燃PP的热稳定性、阻燃性、力学性能的影响。结果表明:SBS的加入使阻燃PP的缺口冲击强度显著提高;IFR的加入,使得体系的极限氧指数普遍升高,其中EVA和CPE的极限氧指数达到32和30;综合材料的性能,选用SBS作为阻燃PP的增韧剂,所制得的阻燃PP的各性能优良。  相似文献   

13.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

14.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

15.
采用氮磷型阻燃剂三聚氰胺聚磷酸盐(MPP)与硼改性酚醛树脂(BPF)组成的复合阻燃体系对玻纤(GF)增强尼龙66( PA66)复合材料进行阻燃,获得了阻燃性能优异、力学性能良好的增强复合材料,研究了协效阻燃剂BPF/MPP配比、BPF/MPP用量及GF用量对阻燃复合材料阻燃性能的影响,采用微型燃烧量热和质量保持率分析方法研究了阻燃复合材料的燃烧及成炭行为,对复合阻燃剂的协效机理进行了讨论.结果表明,当BPF在BPF/MPP中的质量分数为15%时,添加25% BPF/MPP复合阻燃剂可使20% GF增强PA66复合材料达到V-0( 1.6 mm)阻燃级别,极限氧指数增加至25.3%,拉伸强度、弯曲强度、缺口冲击强度分别为116 MPa,132 MPa,7.1 kJ/m2.该复合材料可满足高性能无卤阻燃的使用要求.  相似文献   

16.
林健  王明  王新龙 《塑料助剂》2021,(1):33-39,54
通过熔融共混制备硅酮粉(GM)协同膨胀阻燃剂(IFR)阻燃的高抗冲聚苯乙烯(HIPS)复合材料,并通过红外光谱、扫描电子显微镜、热重分析、X射线衍射以及电子拉力机等对材料和残炭进行表征。结果表明:与只加入IFR相比,GM的加入能明显提升阻燃材料的力学性能,改善IFR与HIPS的相容性,有效提高HIPS的阻燃性能。当加入2%GM和33%IFR时,阻燃HIPS的极限氧指数达到31%、UL-94测试达到V-0级。  相似文献   

17.
以聚磷酸铵(APP)、三聚氰胺(MA)复配制得膨胀型阻燃剂(IFR), 通过密炼机共混制备了阻燃聚丁二烯丁二醇酯(PBS)/淀粉复合材料(PBSS/IFR),并研究了各组分配比及含量对复合材料阻燃性能、热稳定性及力学性能的影响。结果表明,甘油糊化淀粉含量为20 %(质量分数,下同)、甘油/淀粉质量比为3∶1、IFR含量为24 %、APP/MA质量比为5∶1时,复合材料的极限氧指数达到34.5 %;加入IFR后,阻燃复合材料的阻燃性能和热稳定性均提高。  相似文献   

18.
采用硅烷偶联剂、钛酸酯偶联剂、铝钛、铝硅复合偶联剂对无卤膨胀型阻燃剂(IFR)进行表面改性,对比了表面改性前后IFR堆积密度和休止角的变化,研究了表面改性对IFR阻燃聚丙烯(PP)分散性能、力学性能及阻燃性能的影响,并采用锥形量热仪对比了表面改性前后IFR阻燃PP的燃烧行为。结果表明,4种表面改性剂中铝硅复合偶联剂的改性效果最优;可显著改善IFR在PP中的分散性,提高了PP的极限氧指数和UL 94阻燃级别,材料的断裂伸长率提升了200 %,冲击强度提升了50 %;还可抑制IFR的析出,材料燃烧时的热释放速率及总量、生烟速率及总量下降幅度达到30 %左右。  相似文献   

19.
利用熔融共混制备了聚丙烯/膨胀型阻燃剂/马来酸酐接枝聚丙烯(PP/IFR/PP-g-MAH)阻燃复合材料。通过极限氧指数、热重分析、扫描电子显微镜及力学性能测试研究了PP-g-MAH对阻燃复合材料的阻燃性、热稳定性、微观形貌及力学性能的影响。结果表明,PP-g-MAH作为相容剂,当添加5 %的PP-g-MAH时,复合材料的极限氧指数达到30 %, 垂直燃烧达到UL 94 V-0级;随着PP-g-MAH含量的增加,阻燃剂和基体PP之间的界面作用力提高,体系的拉伸强度和弯曲强度均有提升,冲击强度减小幅度不大;与未加PP-g-MAH的复合材料相比,添加相容剂的复合材料成炭率明显提高。  相似文献   

20.
硼酸锌在膨胀型无卤阻燃ABS中的协同作用   总被引:1,自引:0,他引:1  
采用熔融共混法制备了丙烯腈-丁二烯-苯乙烯共聚物(ABS)/膨胀型阻燃剂(IFR)/硼酸锌(ZB)无卤阻燃复合材料。利用热重分析仪、氧指数测定仪、扫描电子显微镜等研究了ZB对复合材料热失重行为、阻燃性能、微观结构及力学、加工性能的影响。较低含量的ZB与IFR存在较好的阻燃协同作用,且ZB可促进IFR成炭,使ABS/IFR复合材料的氧指数及其残炭量分别由未加ZB时的27.4%、21.29%提高到30.1%和23.05%。ZB的加入能够提高ABS/IFR复合材料的弯曲性能和加工性能,但对复合材料的冲击、拉伸性能产生了不利影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号